机器学习
机器学习栏目,包含机器学习算法
pentiumCM
web前后端、深度学习;
展开
-
Caltech Pedestrian Detection 数据集预处理,转VOC格式
文章目录Caltech Pedestrian Detection 数据集预处理一、Caltech 数据集简介参考资料Caltech Pedestrian Detection 数据集预处理一、Caltech 数据集简介官网:http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/Description(Overview):The Caltech Pedestrian Dataset consists of approxim原创 2020-09-17 15:10:43 · 1736 阅读 · 0 评论 -
sklearn — 多项式回归
文章目录sklearn - 多项式回归一、概念:二、性能评价指标:三、demo:参考资料:sklearn - 多项式回归一、概念:二、性能评价指标:三、demo:参考资料:https://scikit-learn.org/stable/modules/linear_model.html#polynomial-regression-extending-linear-models-with-basis-functions...原创 2020-09-10 20:12:55 · 224 阅读 · 0 评论 -
深度学习笔记3 - 学习率衰减,keras实现
文章目录深度学习学习率衰减一、学习率衰减意义二、keras实现学习率衰减1. 阶层性下降参考资料:深度学习学习率衰减一、学习率衰减意义模型训练,关于超参数学习率的设置,一般初始设置为较大的值0.1,然后在学习的过程中进行缩小。这样的好处:大的学习率帮助跳出局部最优值,小的学习率帮助模型收敛,有助于模型细化。二、keras实现学习率衰减1. 阶层性下降ReduceLROnPlateau 简介:在Keras当中,常用 ReduceLROnPlateau 函数实现阶层性下降。阶层性下降指的原创 2020-07-12 17:53:10 · 1316 阅读 · 0 评论 -
机器学习 — 决策树
决策树一、概念二、算法一、概念决策树:决策树属于机器学习中的一种监管学习方法,是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。如下图:二、算法决策树的生成算法有ID3, C4.5和C5.0等。C4.5:C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:用 “增益率” 来选择最优划分属性,克服了用信息增益选择属性;在树构造过程中进行剪枝;能够完成对连续属性的离散化处理;CART..原创 2020-06-19 15:05:05 · 242 阅读 · 0 评论 -
linux(GPU)查看服务器配置
一、服务器型号命令:cat /etc/redhat-release二、CPU命令:查看CPU统计信息:lscpu查看CPU型号:cat /proc/cpuinfo | grep name | cut -f2 -d: | uniq -c查看物理CPU个数:cat /proc/cpuinfo| grep “physical id”| sort| uniq| wc -l查看每个物理CPU中core的个数(即核数):cat /proc/cpuinfo| grep “cpu cores”| u原创 2020-06-11 16:31:17 · 2293 阅读 · 0 评论 -
深度学习 — 过拟合 / 欠拟合问题
文章目录深度学习之过拟合 / 欠拟合一、过拟合深度学习之过拟合 / 欠拟合一、过拟合原创 2020-05-05 15:34:27 · 243 阅读 · 0 评论 -
Keras — mnist 手写体数字识别
Keras入门项目 - mnist 手写体数字识别一、数据集MNIST:原创 2020-05-04 11:17:10 · 402 阅读 · 0 评论 -
机器学习—python 实现网格聚类算法,子空间聚类 CLIQUE算法(pyclustering)
文章目录python 实现网格聚类算法一、基于网格聚类原理二、算法实现1. CLIQUE 算法参考资料python 实现网格聚类算法一、基于网格聚类原理基本思想:基于网络的方法:这类方法的原理就是将数据空间划分为网格单元,将数据对象集映射到网格单元中,并计算每个单元的密度。根据预设的 密度阈值 判断每个网格单元是否为 高密度单元,由邻近的稠密单元组形成 “类”(簇)。算法过程:...原创 2020-04-29 11:16:09 · 10982 阅读 · 15 评论 -
python(sklearn) 聚类性能度量
python(sklearn) 聚类性能度量一、sklearn聚类评价函数:metrics.adjusted_mutual_info_score(…[, …]) metrics.adjusted_rand_score(labels_true, …) metrics.calinski_harabasz_score(X, labels) metrics.davies_bouldin_sco...原创 2020-04-25 23:07:47 · 2544 阅读 · 3 评论 -
python 三维绘图
文章目录python三维绘图一、创建三维坐标轴对象Axes3Dpython三维绘图一、创建三维坐标轴对象Axes3D有两种方式:目的都是生成具有三维格式的对象 Axes3D.方式一利用参数 projection=‘3d’ 来实现:#!/usr/bin/env python# encoding: utf-8'''@Author : pentiumCM@Email : ...原创 2020-04-24 16:23:54 · 685 阅读 · 0 评论 -
机器学习 — python(sklearn / scipy) 实现层次聚类,precomputed自定义距离矩阵
文章目录python 实现层次聚类1. scipy实现2. sklearn实现python 实现层次聚类关于层次聚类的原理,可以参考博客:https://blog.csdn.net/pentiumCM/article/details/105675576本博客主要讲解如何简单直接使用 python 来实现层次聚类。1. scipy实现linkage:def linkage(y, me...原创 2020-04-22 23:35:22 · 17690 阅读 · 4 评论 -
机器学习 - 聚类,聚类类别,聚类相似度,聚类性能度量
文章目录聚类一、概念二、聚类的类别1. 基于划分的聚类2. 基于层次的聚类3. 基于密度的聚类4. 基于网格的聚类5. 基于模型的聚类6. 基于模糊的聚类三、聚类的相似度度量参考资料聚类一、概念无监督学习:无监督学习(Unsupervised learning):训练样本的标记信息是未知的,目标是为了揭露训练样本的内在属性,结构和信息,为进一步的数据挖掘提供基础。监督学习:监...原创 2020-04-22 22:08:56 · 2750 阅读 · 0 评论 -
python — numpy计算矩阵特征值,特征向量
文章目录numpy计算矩阵特征值,特征向量一、示例:二、numpy实现:numpy计算矩阵特征值,特征向量一、示例:首先借参考百度demo的来看一下矩阵的特征值和特征向量的解题过程及结果。可知矩阵A:特征值为1对应的特征向量为 [ -1,-2,1]T。特征值为2对应的特征向量为 [ 0,0,1]T我们可以进一步对特征向量进行单位化,单位化之后的结果如下:特征值为1对应的特征向量为 [...原创 2020-04-21 11:10:01 · 54473 阅读 · 7 评论 -
机器学习 — 主成分分析(PCA),python(sklearn)实现
文章目录主成分分析一、概念二、内容参考资料主成分分析一、概念主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过 正交变换 将一组可能存在相关性的变量转换为 一组 线性不相关 的变量,转换后的这组变量叫 主成分。二、内容基本思想:主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的 综合指标 来代替...原创 2020-04-19 00:12:25 · 3696 阅读 · 2 评论 -
期望值、方差、协方差、相关系数,numpy 计算均值、方差、协方差,相关系数
期望值、方差、协方差1.期望值在概率论和统计学中,期望值(或数学期望、或均值,亦简称期望,物理学中称为期待值)是指在一个离散性随机变量试验中每次可能结果的概率乘以其结果的总和。我们一般使用的平均值,是期望值的特殊情况,即样本值属性的每一种情况出现的概率是相等的。离散情况:E[X] = ΣPi * Xi连续情况:如果X是连续的随机变量,存在一个相应的概率密度函数 f(x),则X...原创 2019-12-18 19:54:36 · 10775 阅读 · 0 评论 -
深度学习笔记1 - batch,iteration,epoch
深度学习-参数笔记batch:深度学习的优化算法,主要以梯度下降为主。每次参数更新有两种方式:(1)一次遍历全部的数据集,算一次损失函数,然后用损失函数求出各个参数的梯度,更新参数(2)每一次遍历一个数据就算一下损失函数。。。两种方案都会存在计算量复杂繁琐的问题。所以采用折中方案:mini-batch gradient decent 小批的的梯度下降。顾名思义,就是将数据集分批进行...原创 2020-03-03 23:16:04 · 329 阅读 · 0 评论 -
Windows安装pytorch0.3.1
Windows安装pytorch0.3.1参考:https://github.com/peterjc123/pytorch-scripts原创 2020-02-28 00:00:31 · 1740 阅读 · 0 评论 -
python — argparse模块,及Pycharm传递参数给argparse
python之argparse模块argparse 模块可以编写用户友好的命令行接口。程序定义它需要的参数,然后 argparse 将弄清如何从 sys.argv 解析出那些参数。 argparse 模块还会自动生成帮助和使用手册,并在用户给程序传入无效参数时报出错误信息。一、argparse用法主要有三个步骤:创建 ArgumentParser() 对象调用 add_argumen...原创 2020-02-25 21:24:17 · 5798 阅读 · 0 评论 -
pytorch解析.pth模型文件
pytorch解析.pth模型文件pytorch训练出来的模型文件是.pth文件。里面保存的是训练好的模型的参数,比如:权值(weight),偏置(bias)等。.pth文件里面的数据结构类型是:collections.OrderedDict(有序字典)解析pytorch模型文件的demo:import torch# 模型路径pthfile = r'F:/experiment/im...原创 2020-02-26 10:13:57 · 8362 阅读 · 0 评论 -
机器学习 — 训练好的模型保存与加载(joblib、pickle)
python训练好的模型保存与加载当我们训练好一个模型model后,如果在其他程序中或者下次想继续使用这个model,我们就需要把这个model保存下来,下次使用时直接导入就好了,不需要重新训练。方式一:采用sklearn中的模块joblib来保存model,核心两行代码如下# 保存 modeljoblib.dump(regr, '../../model/regr.pkl')# ...原创 2020-02-18 10:44:39 · 14353 阅读 · 0 评论 -
python项目目录结构
python 项目目录结构目录组织方式假设你的项目名为foo, 我比较建议的最方便快捷目录结构这样就足够了:Foo/|-- bin/| |-- foo||-- foo/| |-- tests/| | |-- init.py| | |-- test_main.py| || |-- init.py| |-- main.py||-- do...原创 2020-02-16 16:21:01 · 4776 阅读 · 1 评论 -
机器学习 — 数据预处理:标准化/归一化
机器学习之数据预处理-标准化原创 2020-02-22 20:31:16 · 3050 阅读 · 0 评论 -
遗传算法(Genetic Algorithm)解析
遗传算法(Genetic Algorithm)原创 2019-12-24 13:41:44 · 450 阅读 · 0 评论 -
机器学习 — K-Means、K-Means++ 原理及算法实现
一、K-Means聚类1.概念:k-means algorithm算法:K-均值(K-Means)属于聚类算法,之所以称为K-均值是因为它把n个样本根据它们的属性分为k个簇(k < n),且每个簇的中心采用簇中所含值的均值计算而成。聚类:一种无监督的学习,事先不知道类别,自动将相似的对象归到同一簇中。聚类作为一种典型的数据挖掘方法,一直以来都是人工智能领域的一个研究热点,...原创 2019-12-22 21:57:01 · 8317 阅读 · 4 评论