python — numpy计算矩阵特征值,特征向量

python — numpy计算矩阵特征值,特征向量

一、数学演算

  • 示例:

    首先参考百度demo的来看一下矩阵的特征值和特征向量的解题过程及结果。

    在这里插入图片描述在这里插入图片描述在这里插入图片描述
    可知矩阵A:特征值为1对应的特征向量为 [ -1,-2,1]T。特征值为2对应的特征向量为 [ 0,0,1]T

    我们可以进一步对特征向量进行单位化,单位化之后的结果如下:

    • 特征值为1对应的特征向量为 [ 1/√6, 2/√6, -1/√6]T,即 [ 0.40824829, 0.81649658, -0.40824829]T
    • 特征值为2对应的特征向量为 [ 0,0,1]T
      A = [ − 1 1 0 − 4 3 0 1 0 2 ] A= \left[ \begin{matrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{matrix} \right] A=141130002

二、numpy实现

  • 完整代码:

    #!/usr/bin/env python
    # encoding: utf-8
    '''
    @Author  : pentiumCM
    @Email   : 842679178@qq.com
    @Software: PyCharm
    @File    : __init__.py.py
    @Time    : 2020/4/11 9:39
    @desc	 : numpy计算矩阵的特征值,特征向量
    '''
    
    import numpy as np
    
    mat = np.array([[-1, 1, 0],
                  [-4, 3, 0],
                  [1, 0, 2]])
    
    eigenvalue, featurevector = np.linalg.eig(mat)
    
    print("特征值:", eigenvalue)
    print("特征向量:", featurevector)
    
    
  • 运行结果:

    特征值: [2. 1. 1.]
    特征向量: [[ 0.          0.40824829  0.40824829]
     [ 0.          0.81649658  0.81649658]
     [ 1.         -0.40824829 -0.40824829]]
    
  • 结果解释:

    • 返回的特征值:[2. 1. 1.],表示有三个特征值,分别为:2, 1, 1

    • 返回的特征向量:

      [[ 0.          0.40824829  0.40824829]
      [ 0.           0.81649658  0.81649658]
      [ 1.         -0.40824829 -0.40824829]]
      

      是需要 按 列 来 看 的 \color{red}按列来看的 ,并且返回的特征向量是单位化之后的特征向量,
      如第一列 [ 0,0,1]T 是对应于特征值为2的特征向量,
      第二列[ 0.40824829, 0.81649658, -0.40824829]T是对应于特征值为1的特征向量。

Python中,如果不使用NumPy库来矩阵特征值特征向量,可以使用纯Python代码来实现。以下是一个示例,展示如何通过迭代法来计算矩阵特征值特征向量: ```python def matrix_multiply(A, B): result = [[0 for _ in range(len(B[0]))] for _ in range(len(A))] for i in range(len(A)): for j in range(len(B[0])): for k in range(len(B)): result[i][j] += A[i][k] * B[k][j] return result def matrix_transpose(A): return [[A[j][i] for j in range(len(A))] for i in range(len(A[0]))] def matrix_subtract(A, B): return [[A[i][j] - B[i][j] for j in range(len(A[0]))] for i in range(len(A))] def matrix_norm(A): return sum(sum(A[i][j] ** 2 for j in range(len(A[0]))) for i in range(len(A))) ** 0.5 def power_method(A, num_iterations): b_k = [[1] for _ in range(len(A))] for _ in range(num_iterations): b_k1 = matrix_multiply(A, b_k) b_k1_norm = matrix_norm(b_k1) b_k = [[b_k1[i][0] / b_k1_norm] for i in range(len(b_k1))] b_k_transpose = matrix_transpose(b_k) lambda_k = matrix_multiply(matrix_multiply(b_k_transpose, A), b_k)[0][0] return lambda_k, b_k # 示例矩阵 A = [ [4, 1], [2, 3] ] # 计算特征值特征向量 eigenvalue, eigenvector = power_method(A, 1000) print("特征值:", eigenvalue) print("特征向量:", [[eigenvector[i][0]] for i in range(len(eigenvector))]) ``` 这个示例使用了幂法(Power Method)来计算矩阵的最大特征值和对应的特征向量。幂法是一种迭代方法,通过反复乘以矩阵来逼近特征向量
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值