cv
文章平均质量分 86
pentiumCM
web前后端、深度学习;
展开
-
CV — 透视(投影)变换
文章目录CV — 透视(投影)变换一、前言(一) 透视变换概念二、代码实现(一) opencv 函数说明1. warpPerspective2. 示例参考资料转载请备注原文出处,谢谢:https://blog.csdn.net/pentiumCM/article/details/119182719CV — 透视(投影)变换一、前言(一) 透视变换概念前言:仿射变换原理:参考:原理解释:https://blog.csdn.net/xiaowei_cqu/article/det原创 2021-07-29 01:49:53 · 3873 阅读 · 1 评论 -
CV — 数据增强:仿射变换
文章目录CV — 数据增强:仿射变换一、前言(一) 仿射变换概念(二) 仿射变换矩阵二、代码实现(一) opencv 函数说明1. warpAffine2. warpPerspective(二) 实现代码CV — 数据增强:仿射变换一、前言(一) 仿射变换概念前言:在深度学习的数据增强中,我们经常需要对图像进行各种增强操作如:平移、翻转(flip)、缩放(Scale)、旋转(Rotation)、裁剪(Shear) 等,这些其实都是 图像的仿射变换。待确认:对比度,色彩抖动,噪声仿射变换原创 2021-07-28 16:05:55 · 2321 阅读 · 0 评论 -
CV — 目标检测:数据增强
文章目录CV — 目标检测:数据增强一、相关概念(一) 数据增强(二) 目标检测数据增强1. 针对像素2. 针对图像二、数据增强方式(一) 仿射变换(三) 色调变换三、常见数据增强方式三、经典算法(一) yolov51. 数据增强步骤1. mosaic2. Cutout4. 矩形训练(二) ssd1. 数据增强步骤2. 总结(三) opencv四、总结(一) 步骤(二) 辅助函数1. 随机函数参考文献CV — 目标检测:数据增强一、相关概念(一) 数据增强数据增强:数据增强(DataAug原创 2021-07-28 15:10:06 · 8438 阅读 · 0 评论 -
CV — 色彩空间:RGB、HSV、HLS
文章目录CV — 色彩空间:RGB、HSV、HLS一、 RGB(一) RGB 颜色系统二、HSV(一) HSV颜色模型(二) 代码案例1. HSV 值进行目标物体的提取2. 使用 HSV 图像分割三、HLS1. HLS 颜色空间2. 代码案例参考资料CV — 色彩空间:RGB、HSV、HLS一、 RGB(一) RGB 颜色系统RGB 简介:RGB是从颜色发光的原理来设计定的,通俗点说它的颜色混合方式就好像有红、绿、蓝三盏灯,当它们的光相互叠合的时候,色彩相混,而亮度却等于三者亮度之总和,越原创 2021-07-27 15:41:22 · 5822 阅读 · 3 评论 -
CV — 目标检测:letterbox
文章目录CV — 目标检测:letterbox一、相关概念二、代码实现(一) python代码CV — 目标检测:letterbox一、相关概念letterbox:概念:在深度学习算法中,大多数目标检测算法由于 卷积核为方形(不排除卷积核有矩形的情况),所以模型输入图片的尺寸也需要为方形。然而大多数数据集的图片基本上为 矩形,直接将图片 resize 到正方形,会导致图片失真,比如细长图片中的物体会变畸形。letterbox操作:在对图片进行resize时,保持原图的长宽比进行等比例缩放原创 2021-07-19 02:01:42 · 10956 阅读 · 2 评论 -
CV — 图像预处理
文章目录CV — 图像预处理一、常见手段1. BRG -> RGB2. 图像归一化CV — 图像预处理一、常见手段1. BRG -> RGB我们通过cv2读图片时,数据读取的通道顺序是bgr,并且是height, width, channel的排列方式,需要将 BGR 转为 RGB 格式。操作代码:img = cv2.imread("img_path")img = img[:,:,::-1].transpose(2, 0, 1)解释说明:img[:,:,::-1]也就原创 2021-06-25 09:37:27 · 487 阅读 · 0 评论 -
深度学习 — 卷积神经网络
文章目录深度学习笔记9 —— 卷积神经网络一、CNN网络结构1. 卷积层参考资料深度学习笔记9 —— 卷积神经网络一、CNN网络结构1. 卷积层概念感受野:输出的feature map 上的一个节点,对应于输入图像上尺寸的大小。特点卷积层中低层的feature map,感受野比较小,高层的感受野比较大。浅层卷积层对边缘更感兴趣,可以获得一些细节信息深层卷积层对 由浅层卷积层构成的复杂特征更感兴趣,可以获得一些语义信息参考资料https://blog.csdn原创 2020-12-10 19:21:17 · 233 阅读 · 1 评论 -
深度学习 — yolov5 自定义数据集训练
文章目录深度学习笔记8 ---- yolov5迁移学习深度学习笔记8 ---- yolov5迁移学习原创 2020-12-01 11:24:38 · 8415 阅读 · 8 评论 -
CV — 性能评价指标
文章目录CV - 性能评价指标一、通用的性能评价指标1. 混淆矩阵二、目标检测领域1. IoU2. mAPCV - 性能评价指标对于算法模型的性能指标,看你具体的任务是什么,最基本的分类还是回归,二分类查全查准f1,多分类macro/micro的查全查准f1,回归主要看代价函数,或者算偏差和方差;但是具体到某个特定的任务和领域有他自己用的比较多的指标一、通用的性能评价指标1. 混淆矩阵二、目标检测领域1. IoUIoU:预测框和真实框的交集 / 预测框与真实框的并集IoU的取值范原创 2020-11-12 00:34:06 · 1952 阅读 · 0 评论 -
深度学习 — IoU python 高质量实现
文章目录深度学习笔记7 - IoU python 实现一、IoU 含义二、算法实现深度学习笔记7 - IoU python 实现一、IoU 含义二、算法实现算法思想#!/usr/bin/env python# encoding: utf-8'''@Author : pentiumCM@Email : 842679178@qq.com@Software: PyCharm@File : iou_utils.py@Time : 2020/11/22 15:32@de原创 2020-11-22 20:03:18 · 1161 阅读 · 5 评论 -
python3 - KAIST 行人数据集预处理,转VOC格式
文章目录KAIST 行人数据集预处理一、KAIST 行人数据据简介下载链接参考资料KAIST 行人数据集预处理一、KAIST 行人数据据简介数据集:KAIST 行人数据集中的每张图片都由一张可见光图片和与之对应的长波红外图像组成。KAIST 训练集由 50172 对在全天候(白天和夜间)采集的可见光与长波红外配对图像(分辨率为 640x512)和 13853 个行人矩形框标注组成。KAIST 测试集由2252 对可见光与长波红外配对图像和 1356 个行人矩形框标注组成,其中 1455 对原创 2020-11-04 20:21:03 · 2456 阅读 · 10 评论 -
特征金字塔
文章目录特征金字塔特征金字塔原创 2020-09-23 17:04:14 · 213 阅读 · 0 评论