Caltech Pedestrian Detection 数据集预处理,转VOC格式


Caltech Pedestrian Detection 数据集预处理

一、Caltech 数据集简介

官网:http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/

  • Description(Overview):
    The Caltech Pedestrian Dataset consists of approximately 10 hours of 640x480 30Hz video taken from a vehicle driving through regular traffic in an urban environment. About 250,000 frames (in 137 approximately minute long segments) with a total of 350,000 bounding boxes and 2300 unique pedestrians were annotated. The annotation includes temporal correspondence between bounding boxes and detailed occlusion labels.

    加州理工学院的行人数据集包含大约10个小时的 640x480 30Hz视频,该视频取自在城市环境中通过正常交通行驶的车辆。
    注释了大约250,000帧(在137个大约一分钟长的段中),总共有350,000个边界框和2300个唯一的行人。 注释包括边界框和详细的遮挡标签之间的时间对应。

    (30Hz:是每秒采集到30张图片)

  • Caltech Pedestrian Dataset:
    训练数据(set00-set05)包含六个训练集(每个约1GB),每个训练集包含6-13个一分钟长的seq文件以及所有注释信息(有关详细信息,请参见本文)。
    测试数据(set06-set10)包含五组,每组约1GB。新增:现在还提供了整个数据集的注释。也提供包含所有评估算法的检测结果的输出文件。

  • Seq video format:
    seq文件是一系列具有固定大小标头的串联图像帧。

    可以在Piotr的Matlab工具箱(需要版本3.20或更高版本)中找到用于读取/写入/操作seq文件的Matlab例程。 这些例程还可用于将seq文件提取到图像目录。
    (本文在预处理部分将介绍:采用 python 的方式来解析 seq 文件)

  • annotations(标注):
    标注使用自定义的 “视频边界框”(vbb)文件格式。
    该代码还包含实用程序,可用于查看带有叠加注释的seq文件,用于生成论文中所有ROC图的评估例程,以及用于创建数据集的vbb标签工具(另请参见此过时的视频教程)。


二、数据集预处理

值得说明的是,预处理的代码全部基于python3的语法。

1. Seq 文件转化成 JEPG 图像文件

详细过程可以查看我的另一篇博客:
https://blog.csdn.net/pentiumCM/article/details/108622304


处理的完整代码:
#!/usr/bin/env python
# encoding: utf-8
'''
@Author  : pentiumCM
@Email   : 842679178@qq.com
@Software: PyCharm
@File    : seq_process.py
@Time    : 2020/9/7 21:44
@desc	 : Caltech数据集 seq 类型文件数据集处理
'''

# Deal with .seq format for video sequence
# The .seq file is combined with images,
# so I split the file into several images with the image prefix
# "\xFF\xD8\xFF\xE0\x00\x10\x4A\x46\x49\x46".

import os.path
import fnmatch
import shutil


def open_save(file, savepath):
    """
    read .seq file, and save the images into the savepath

    :param file: .seq文件路径
    :param savepath: 保存的图像路径
    :return:
    """

    # 读入一个seq文件,然后拆分成image存入savepath当中
    f = open(file, 'rb+')
    # 将seq文件的内容转化成str类型
    string = f.read().decode('latin-1')

    # splitstring是图片的前缀,可以理解成seq是以splitstring为分隔的多个jpg合成的文件
    splitstring = "\xFF\xD8\xFF\xE0\x00\x10\x4A\x46\x49\x46"

    # split函数做一个测试,因此返回结果的第一个是在seq文件中是空,因此后面省略掉第一个
    """
    >>> a = ".12121.3223.4343"
    >>> a.split('.')
    ['', '12121', '3223', '4343']
    """
    # split .seq file into segment with the image prefix
    strlist = string.split(splitstring)
    f.close()
    count = 0
    # delete the image folder path if it exists
    if os.path.exists(savepath):
        shutil.rmtree(savepath)
    # create the image folder path
    if not os.path.exists(savepath):
        os.makedirs(savepath)
    # deal with file segment, every segment is an image except the first one
    for img in strlist:
        filename = str(count) + '.jpg'
        filenamewithpath = os.path.join(savepath, filename)
        # abandon the first one, which is filled with .seq header
        if count > 0:
            i = open(filenamewithpath, 'wb+')
            i.write(splitstring.encode('latin-1'))
            i.write(img.encode('latin-1'))
            i.close()
        count += 1


if __name__ == "__main__":
    rootdir = "F:/experiment/Caltech/data"
    saveroot = "F:/experiment/Caltech/VOC_process/JPEGImages"

    # walk in the rootdir, take down the .seq filename and filepath
    for parent, dirnames, filenames in os.walk(rootdir):
        for filename in filenames:
            # check .seq file with suffix
            # fnmatch 全称是 filename match,主要是用来匹配文件名是否符合规则的
            if fnmatch.fnmatch(filename, '*.seq'):
                # take down the filename with path of .seq file
                thefilename = os.path.join(parent, filename)
                # create the image folder by combining .seq file path with .seq filename
                parent_path = parent
                parent_path = parent_path.replace('\\', '/')
                thesavepath = saveroot + '/' + parent_path.split('/')[-1] + '/' + filename.split('.')[0]
                print("Filename=" + thefilename)
                print("Savepath=" + thesavepath)
                open_save(thefilename, thesavepath)

2. VBB 标注文件转化为 XML 文件

处理的完整代码:

#!/usr/bin/env python
# encoding: utf-8
'''
@Author  : pentiumCM
@Email   : 842679178@qq.com
@Software: PyCharm
@File    : seq2voc.py
@Time    : 2020/9/7 21:44
@desc	 : Caltech数据集 VBB 标注文件转化为XML文件
'''

import os, glob
import cv2
from scipy.io import loadmat
from collections import defaultdict
import numpy as np
from lxml import etree, objectify


def vbb_anno2dict(vbb_file, cam_id):
    # 通过os.path.basename获得路径的最后部分“文件名.扩展名”
    # 通过os.path.splitext获得文件名
    filename = os.path.splitext(os.path.basename(vbb_file))[0]

    # 定义字典对象annos
    annos = defaultdict(dict)
    vbb = loadmat(vbb_file)
    # object info in each frame: id, pos, occlusion, lock, posv
    objLists = vbb['A'][0][0][1][0]
    objLbl = [str(v[0]) for v in vbb['A'][0][0][4][0]]  # 可查看所有类别
    # person index
    person_index_list = np.where(np.array(objLbl) == "person")[0]  # 只选取类别为‘person’的xml
    for frame_id, obj in enumerate(objLists):
        if len(obj) > 0:
            frame_name = str(cam_id) + "_" + str(filename) + "_" + str(frame_id + 1) + ".jpg"
            annos[frame_name] = defaultdict(list)
            annos[frame_name]["id"] = frame_name
            annos[frame_name]["label"] = "person"
            for id, pos, occl in zip(obj['id'][0], obj['pos'][0], obj['occl'][0]):
                id = int(id[0][0]) - 1  # for matlab start from 1 not 0
                if not id in person_index_list:  # only use bbox whose label is person
                    continue
                pos = pos[0].tolist()
                occl = int(occl[0][0])
                annos[frame_name]["occlusion"].append(occl)
                annos[frame_name]["bbox"].append(pos)
            if not annos[frame_name]["bbox"]:
                del annos[frame_name]
    print(annos)
    return annos


def seq2img(annos, seq_file, outdir, cam_id):
    cap = cv2.VideoCapture(seq_file)
    index = 1
    # captured frame list
    v_id = os.path.splitext(os.path.basename(seq_file))[0]
    cap_frames_index = np.sort([int(os.path.splitext(id)[0].split("_")[2]) for id in annos.keys()])
    while True:
        ret, frame = cap.read()
        print(ret)
        if ret:
            if not index in cap_frames_index:
                index += 1
                continue
            if not os.path.exists(outdir):
                os.makedirs(outdir)
            outname = os.path.join(outdir, str(cam_id) + "_" + v_id + "_" + str(index) + ".jpg")
            print("Current frame: ", v_id, str(index))
            cv2.imwrite(outname, frame)
            height, width, _ = frame.shape
        else:
            break
        index += 1
    img_size = (width, height)
    return img_size


def instance2xml_base(anno, bbox_type='xyxy'):
    """bbox_type: xyxy (xmin, ymin, xmax, ymax); xywh (xmin, ymin, width, height)"""
    assert bbox_type in ['xyxy', 'xywh']
    E = objectify.ElementMaker(annotate=False)
    anno_tree = E.annotation(
        E.folder('VOC2014_instance/person'),
        E.filename(anno['id']),
        E.source(
            E.database('Caltech pedestrian'),
            E.annotation('Caltech pedestrian'),
            E.image('Caltech pedestrian'),
            E.url('None')
        ),
        E.size(
            E.width(640),
            E.height(480),
            E.depth(3)
        ),
        E.segmented(0),
    )
    for index, bbox in enumerate(anno['bbox']):
        bbox = [float(x) for x in bbox]
        if bbox_type == 'xyxy':
            xmin, ymin, w, h = bbox
            xmax = xmin + w
            ymax = ymin + h
        else:
            xmin, ymin, xmax, ymax = bbox
        E = objectify.ElementMaker(annotate=False)
        anno_tree.append(
            E.object(
                E.name(anno['label']),
                E.bndbox(
                    E.xmin(xmin),
                    E.ymin(ymin),
                    E.xmax(xmax),
                    E.ymax(ymax)
                ),
                E.difficult(0),
                E.occlusion(anno["occlusion"][index])
            )
        )
    return anno_tree


def parse_anno_file(vbb_inputdir, vbb_outputdir):
    """

    :param vbb_inputdir:
    :param vbb_outputdir:
    :return:
    """
    # annotation sub-directories in hda annotation input directory
    assert os.path.exists(vbb_inputdir)
    sub_dirs = os.listdir(vbb_inputdir)  # 对应set00,set01...
    for sub_dir in sub_dirs:
        print("Parsing annotations of camera: ", sub_dir)
        cam_id = sub_dir
        # 获取某一个子set下面的所有vbb文件
        vbb_files = glob.glob(os.path.join(vbb_inputdir, sub_dir, "*.vbb"))
        for vbb_file in vbb_files:
            # 返回一个vbb文件中所有的帧的标注结果
            annos = vbb_anno2dict(vbb_file, cam_id)

            if annos:
                # 组成xml文件的存储文件夹,形如“/Users/chenguanghao/Desktop/Caltech/xmlresult/”
                vbb_outdir = vbb_outputdir

                # 如果不存在
                if not os.path.exists(vbb_outdir):
                    os.makedirs(vbb_outdir)

                for filename, anno in sorted(annos.items(), key=lambda x: x[0]):
                    if "bbox" in anno:
                        anno_tree = instance2xml_base(anno)
                        outfile = os.path.join(vbb_outdir, os.path.splitext(filename)[0] + ".xml")
                        print("Generating annotation xml file of picture: ", filename)
                        # 生成最终的xml文件,对应一张图片
                        etree.ElementTree(anno_tree).write(outfile, pretty_print=True)


def vbb2voc():
    """
    vbb标注文件 转 VOC标注 的 xml 入口函数
    :return:
    """
    vbb_inputdir = "F:/experiment/Caltech/annotations_org/"
    vbb_outputdir = "F:/experiment/Caltech/VOC_process/Annotations_org/"
    parse_anno_file(vbb_inputdir, vbb_outputdir)


if __name__ == "__main__":
    vbb2voc()


参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值