预测算法模型系列(一)

本没有专门要写这篇文章,但是在项目过程中总要沉淀一些东西,不写下来肯定过两年就忘了。写的粗浅,也只能作为引子启发一下初入算法开发的新朋友们,老鸟儿就将就着看看吧,欢迎斧正。

  1. 一、数据清洗
    1. 归一化
    2. 补全
    3. 去杂
    4. 。。。
  2. 二、相关性分析
    1. 方差分析
    2. 卡方分析
    3. T检验分析
    4. 。。。
  3. 三、模型算法
    1. 线性回归
    2. 逻辑回归
    3. 随机森林
    4. 。。。

以上内容就是这篇系列文章的目录。我会不断完善更新的。

做预测类算法模型,步骤基本上如下:

  1. 首先要对数据做清洗
  2. 然后对数据做分析
  3. 最后带入算法模型去训练

这中间在对数据分析后可能需要再次清洗,然后再分析;或者带入训练后根据结果再清洗,再训练。总之,是个反复的过程。

我是在做一个医疗的项目,预测疾病发生概率的模型,下面针对每个环节展开记述。

预测算法模型系列(二)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值