perliu
码龄22年
关注
提问 私信
  • 博客:16,330
    社区:1,614
    问答:681
    18,625
    总访问量
  • 16
    原创
  • 2,351,959
    排名
  • 41
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:反正是一个很容易和大家打成一片的人

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:辽宁省
  • 加入CSDN时间: 2002-09-29
博客简介:

perliu的专栏

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    127
    当月
    1
个人成就
  • 获得49次点赞
  • 内容获得11次评论
  • 获得72次收藏
创作历程
  • 2篇
    2024年
  • 12篇
    2023年
  • 2篇
    2021年
成就勋章
兴趣领域 设置
  • 后端
    spring boot
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

180人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

预测算法模型系列(八)

我们用验证数据和最优权重计算后得到了每组预测结果[y1, y2, y3 ...],那别忘了这些预测结果都是0和1之间的数,我们要把他们归类成0或者1,对吧,归类就需要一个判断条件吧,大于等于一个数归类成1,小于这个数归类成0。把正负样本配对进行计算,实际就是两层循环,先循环所有实际值为1的正样本,对每个正样本循环配对实际值为0的负样本,循环时间成本就是P*N,这个成本并不高,因为用来做验证模型的数据集的数据量并不大。看这个曲线下的面积,就是图中蓝色阴影面积,这个面积越大越好,这个面积有个名字叫。
原创
发布博客 2024.01.26 ·
870 阅读 ·
13 点赞 ·
1 评论 ·
18 收藏

预测算法模型系列(七)

一般默认权重组为[0.5, 0.5, 0.5...],第一次计算后我们调整每一个权重的值再次计算,权重值的调整根据预测值和真实结果之间的差值,再结合每一个自变量的值以及调整步长来重新计算得到,这这样每个自变量的权重都是不同的,都是跟自变量本身数据相关的。我们准备好的一组样本数据并不是计算一次就ok了,我们需要反复计算,来得到ROC曲线,用验证数据集的所有数据计算一次就是ROC曲线上的一个点,如果我们想要一个有100个点组成的曲线,那么就要计算100次。网上关于AUC的计算有多种方式,我用了排序计算的方法。
原创
发布博客 2024.01.25 ·
927 阅读 ·
18 点赞 ·
1 评论 ·
21 收藏

预测算法模型系列(六)

这个目前正在研究,等研究明白了,再来补充。
原创
发布博客 2023.09.22 ·
217 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

预测算法模型系列(五)

我们以离家远中近分三行来看,离家近的概率是所有学校离家近的累计和,除以全部学生数(50+40+30+10)/(50+40+30+10+10+20+30+30+5+10+20+50)= 130/305 = 42.62%。,既然学籍和离家远近没有关系,那么在小学学籍的样本数据中,离家近的应该占42.62%,中的占29.51%,远的占27.87%,他应该符合这个概率分布。我们一般使用0.05的概率为基准,作为置信区,如果出现的计算概率值小于0.05,就说明有极小的可能性原假设是成立的,反之理解就是原假设不成立。
原创
发布博客 2023.09.18 ·
151 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

预测算法模型系列(四)

但是经过计算后发现这个比值远大于1,就是说组间的误差明显体现出来了,那肯定是这个分类的不同对目标数据有影响呀,那我们的原假设H0就不成立,必须要承认自变量和因变量有相关关系,自变量分类的不同,明显影响到了因变量的数据。组内误差SSE可以看出是否异常毛刺数据比较多,也就是随机误差太大,比如小学组的人工资平均是100,但是有个别人工资是1000,这样的异常数据少的话,那组内误差SSE也不会太大,但是这样的异常数据太多,那就要考虑看看是否要修正数据了。不不不~~~ 这么算,体现不出两组数据的差异波动。
原创
发布博客 2023.09.18 ·
211 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

预测算法模型系列(三)

从数学公式角度来看,数据可分为两类,自变量和因变量。y=x+1 这个一次函数中,x是自变量,y是因变量,也就是说也是随着x的取值变化而变化的。那么我们在做预测模型的时候,预测的结果就是因变量,用来计算预测结果的数据就是自变量。举个例子,性别、年龄、血压、死亡,这四项数据中,死亡就是因变量,也是我们要预测的结果,性别、年龄、血压就是自变量,利用这三项数据的变化预测是否死亡。另外从数据的本身内容来看,还可以分为定类、定序、定距、定比四种类型(可能也有别的叫法)。这四种再归类可分为定类、定量两种类型。
原创
发布博客 2023.09.18 ·
204 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

预测算法模型系列(二)

1、补全处理:有些原始表里的数据不是必填项,所以会有空值的情况,对于空值的补充处理要根据该字段的作用来分析处理,如果是空值有代表意义那就保留空值,如果空值没有代表意义,只是数据不完整,那可以根据情况用如下几种方式补充:均值补充、随机数补充、固定值补充、规律值补充等。
原创
发布博客 2023.09.14 ·
106 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

预测算法模型系列(一)

本没有专门要写这篇文章,但是在项目过程中总要沉淀一些东西,不写下来肯定过两年就忘了。写的粗浅,也只能作为引子启发一下初入算法开发的新朋友们,老鸟儿就将就着看看吧,欢迎斧正。这中间在对数据分析后可能需要再次清洗,然后再分析;或者带入训练后根据结果再清洗,再训练。总之,是个反复的过程。我是在做一个医疗的项目,预测疾病发生概率的模型,下面针对每个环节展开记述。以上内容就是这篇系列文章的目录。我会不断完善更新的。
原创
发布博客 2023.09.14 ·
100 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

从字节到字符架一座桥---InputStreamReader

为了更有效率,也能更好的节省服务器内存,一般情况都是读取文件一部分内容就处理一下,然后再读取一部分,每次读取相同大小的文件内容放到缓冲区里。这样缓冲区的内容被处理后,就抛弃掉,再读进来新的数据继续处理,避免了内存不够的问题,也节省了IO的操作成本。那这个大兄弟到底能干啥?这使用了系统默认的字符集,一般中文系统字符集都是GBK或者GB2312吧,但是其他国家有用UTF-8的,当你拿到utf-8的文件,你用系统默认的GBK可能读取的字符就会有问题。我们之前介绍过的 【FileInputStream】有印象吗?
原创
发布博客 2023.07.07 ·
60 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

文件读取---FileInputStream

FileInputStream 和 FileReader 是远房亲戚,从等级上来说算是uncle了吧。但是这个uncle的构造参数和FileReader是一毛一样,要不然怎么算亲戚呢。哎~这代码跟 FileReader 也差不都呀,就是将 char[]换成了byte[]而已哦,对,没看错,就是这样,嘿嘿。上篇讲了FileReader,说到读取字节就要找兄弟FileInputStream,那就说说兄弟。
原创
发布博客 2023.07.07 ·
463 阅读 ·
0 点赞 ·
2 评论 ·
0 收藏

文件读取---FileReader

操作,是因为最后一次读取的时候可能剩下的文件内容不够1024个字符了,这个时候就要按照读取到的字符数量从数组中截取内容,否则数组中后续其他内容是上次读取的字符数据,没必要再重复处理了。读取文件内容,而且是按照字符读取,一个字母算一个字符,一个汉字也算一个字符,但是回车是一个字符,换行是一个字符,\r
(回车换行)是会被读成两个字符的。这是按照字符处理,如果读取的文件不是文本文件,例如图片、视频、zip等等,那就要按照字节读取,FileReader: 臣妾做不到啊!
原创
发布博客 2023.07.07 ·
570 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

抽象类FilterReader,见笑了

should override some of these methods and may also provide additional methods and fields.” 就是说子类应该重写一些自己要特殊处理的父类方法,也可以在子类中增加一些父类没有的自有的方法,为 FilterReader 这个父类扩展更多的功能。3、很少有直接从文件读取内容,然后一个一个字符处理的情况,因为从文件读取完全没有必要用这个类,有FileReader去处理。2、从数据库中读取的数据要按照字符处理一个一个读取处理;
原创
发布博客 2023.07.07 ·
100 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

fastjson 对象与JSON转换方法

经常在json对象、类、字符串之间徘徊
原创
发布博客 2023.07.06 ·
7058 阅读 ·
6 点赞 ·
0 评论 ·
13 收藏

【VUE3 + uni-app】防抖组件、节流组件

实现防抖功能,防止用户快速多次点击。延迟时间自己设置,以最后一次点击为准。只支持vue3的setup语法糖。实现节流功能,防止用户快速多次点击。延迟时间自己设置,以第一次点击为准。只支持vue3的setup语法糖。在工程的components目录下创建名字为。在工程的components目录下创建名字为。的目录,在该目录中创建。的目录,在该目录中创建。组件页面,下载源码.
原创
发布博客 2023.06.27 ·
717 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Spring WebClient 的 basic auth 使用

接上一篇 RestTemplate的basic auth使用;在spring5后官方带来了WebClient,说是以后替代RestTemplate了,不知道真假哈,既然有了新东西,就研究一下使用方法呗,也同时做个备忘笔记。老规矩,先上结果,后说问题:import org.springframework.http.HttpHeaders;import org.springframework.web.reactive.function.client.WebClient;import react
原创
发布博客 2021.01.13 ·
1278 阅读 ·
3 点赞 ·
0 评论 ·
3 收藏

Spring RestTemplate的Basic Auth使用

在org.springframework.web.client.RestTemplate这个类的使用过程中遇到了点小疑惑,这里和大家分享一下,同时也是做个备忘录。先给结果,后说疑问://方法一 使用RestTemplateBuilder来实例化RestTemplateBuilder builder = new RestTemplateBuilder(); RestTemplate restTemplate = builder.basicAuthentication("username", ".
原创
发布博客 2021.01.13 ·
3261 阅读 ·
8 点赞 ·
1 评论 ·
7 收藏

数码视讯Q5 905m固件烧录软件

发布资源 2020.12.23 ·
rar

数码视讯Q5胡莱精简固件---亲测可用

发布资源 2020.12.23 ·
7z

数码视讯Q5胡莱固件---测试可用

发布资源 2020.12.23 ·
rar

数码视讯Q5 905m胡莱固件

发布资源 2020.12.23 ·
rar
加载更多