简介
目前TensorFlow支持11种不同的经典优化器(参考TensorFlow API tf.train文档)
- tf.train.Optimizer
- tf.train.GradientDescentOptimizer
- tf.train.AdadeltaOptimizer
- tf.train.AdagtadOptimizer
- tf.train.AdagradDAOptimizer
- tf.train.MomentumOptimizer
- tf.train.AdamOptimizer
- tf.train.FtrlOptimizer
- tf.train.ProximalGradientDescentOptimizer
- tf.train.ProximalAdagradOptimizer
- tf.train.RMSProOptimizer
介绍三种常用优化器
下面重点介绍 tf.train.GradientDescentOptimizer、tf.train.MomentumOptimizer、tf.train.AdamOptimizer
1. tf.train.GradientDescentOptimizer
这个优化器主要实现的是 梯度下降算法
__init__(
learning_rate,
use_locking=False,
name='GradientDescent'
)
learning_rate
: (学习率)张量或者浮点数use_locking
: 为True时锁定更新name
: 梯度下降名称,默认为"GradientDescent".
2. tf.train.MomentumOptimizer
实现 动量梯度下降算法 ,可参考 简述动量Momentum梯度下降
Δxt=ρΔxt−1−ηgt
其中,
ρ
即momentum,表示要在多大程度上保留原来的更新方向,这个值在0-1之间,在训练开始时,由于梯度可能会很大,所以初始值一般选为0.5;当梯度不那么大时,改为0.9。
η 是学习率,即当前batch的梯度多大程度上影响最终更新方向,跟普通的SGD含义相同。
ρ 与
η 之和不一定为1。
__init__(
learning_rate,
momentum,
use_locking=False,
name='Momentum',
use_nesterov=False
)
learning_rate
: (学习率)张量或者浮点数momentum
: (动量)张量或者浮点数use_locking
: 为True时锁定更新name
: 梯度下降名称,默认为 "Momentum".use_nesterov
: 为True时,使用 Nesterov Momentum.
3. tf.train.AdamOptimizer
实现 Adam优化算法( Adam 这个名字来源于 adaptive moment estimation,自适应矩估计。)
可参考博客梯度优化算法Adam
__init__(
learning_rate=0.001,
beta1=0.9,
beta2=0.999,
epsilon=1e-08,
use_locking=False,
name='Adam'
)
learning_rate
: (学习率)张量或者浮点数beta1
: 浮点数或者常量张量 ,表示 The exponential decay rate for the 1st moment estimates.beta2
: 浮点数或者常量张量 ,表示 The exponential decay rate for the 2nd moment estimates.epsilon
: A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper.use_locking
: 为True时锁定更新name
: 梯度下降名称,默认为 "Adam".