【自动控制原理】第5章 幅相频率特性曲线(奈氏图)及其绘制


关注作者了解更多

我的其他CSDN专栏

过程控制系统

工程测试技术

虚拟仪器技术

可编程控制器

工业现场总线

数字图像处理

智能控制

传感器技术

嵌入式系统

复变函数与积分变换

单片机原理

线性代数

大学物理

热工与工程流体力学

数字信号处理

光电融合集成电路技术

电路原理

模拟电子技术

高等数学

概率论与数理统计

数据结构

C语言

模式识别原理

自动控制原理

数字电子技术

关注作者了解更多

资料来源于网络,如有侵权请联系编者

目录

5.2.1 幅相频率特性曲线(奈氏图)基本概念

具体步骤如下:

5.2.2典型环节的奈氏图

1、比例环节 

2、积分环节

3、微分环节

4、惯性环节​编辑

   5、一阶微分环节​编辑

    6、二阶振荡环节(传递函数)​编辑

1.阻尼比大于0.707时,二阶振荡环节类似于惯性环节

7、延迟环节​编辑

5.2.3  开环奈氏图的绘制

2.开环奈氏图基本绘制规律

(1)低频段的确定(w→0)

(2)高频段(w→∞)

(3)奈氏图与实轴、虚轴的交点

(4)开环零点对曲线的影响

根据以上绘制规律,可以方便地绘制系统的开环概略奈氏图。

回顾开环奈氏图的绘制

下图列出了常见系统的开环传递函数与开环概略奈氏图。​编辑​编辑​编辑​编辑


5.2.1 幅相频率特性曲线(奈氏图)基本概念

绘制奈氏图的坐标系是极坐标与直角坐标系的重合。取极点为直角坐标的原点,极坐标轴为直角坐标的实轴。

由于系统的频率特性表达式为

 对于某一特定频率ωi下的G(jωi)总可以用复平面上的一个向量与之对应,该向量的长度为A(ωi),与正实轴的夹角为(ωi)。

由于A(w)和j(w)是频率的函数,当ω0→∞的范围内连续变化时,向量的幅值与相角均随之连续变化,不同ω下的向量的端点在复平面上扫过的轨迹即为该系统的幅相频率特性曲线(奈氏曲线),如图所示

在绘制奈氏图时,常把ω作为参变量,标在曲线旁边,并用箭头表示频率增大时曲线的变化轨迹,以便更清楚地看出该系统频率特性的变化规律。

前面已经指出,系统的幅频特性与实频特性是ω的偶函数,而相频特性与虚频特性是ω的奇函数,即G(jω)与G(-jω)互为共轭。因此,假定ω可为负数,当ω在-∞→0的范围内连续变化时,相应的奈氏图曲线G(jω)必然与G(-jω)对称于实轴。ω取负数虽然没有实际的物理意义,但是具有鲜明的数学意义,主要用于控制系统的奈氏稳定判别中。

当系统或元件的传递函数已知时,可以采用解析的方法先求取系统的频率特性,再求出系统幅频特性、相频特性或者实频特性、虚频特性的表达式,再逐点计算描出奈氏曲线

具体步骤如下:

1.用jω代替s,求出频率特性G(jω)

2.求出幅频特性A(ω)与相频特性(ω)的表达式,也可求出实频特性与虚频特性,帮助判断G(jω)所在的象限。

3.在0→∞的范围内选取不同的ω,根据A(ω)与(ω)表达式计算出对应值,在坐标图上描出对应的向量G(jω),将所有G(jω)的端点连接描出光滑的曲线即可得到所求的奈氏曲线。

5.2.2典型环节的奈氏图

1、比例环节 

传递函数为 :G(s)=K

用jw替换s,可求得比例环节的频率特性表达式为  G(jw)=K

幅频特性 A(ω)= | K |= K相频特性 p(ω)=0º

 比例环节的幅频特性、相频特性均与频率w无关。所以当w由0变到无穷,G(jw)始终为实轴上一点,说明比例环节可以完全、真实地复现任何频率的输入信号,幅值上有放大或衰减作用;j(w)=0º,表示输出与输入同相位,既不超前也不滞后。

2、积分环节

积分环节的传递函数为

积分环节的频率特性为

相频和幅频特性为 积分环节的幅相频率特性如图所示,在0<<的范围内,幅频特性与负虚轴重合。  

积分环节的奈氏图表明积分环节是低通滤波器,放大低频信号、抑制高频信号,输入频率越低,对信号的放大作用越强;并且有相位滞后作用,输出滞后输入的相位恒为90º。

3、微分环节

微分环节的传递函数为

频率特性为

幅频和相频特性为

理想微分环节的奈氏图如图所示,在0<p<无穷的范围内,其奈氏图与正虚轴重合。  

可见,理想微分环节是高通滤波器,输入频率越高,对信号的放大作用越强;并且有相位超前作用,输出超前输入的相位恒为90º,说明输出对输入有提前性、预见性作用。

4、惯性环节

    根据实频特性与虚频特性表达式,可以判断出实频特性恒≥0,而虚频特性恒≤0,由此可见惯性环节的奈氏图必在坐标系的第四象限。

   当w从0变到 无穷时,可以根据幅频特性与相频特性表达式描点绘制奈氏图,例如可以绘出三个点,

   图像 是一个位于第四象限的半圆,圆心为(1/2,0),直径为1。  若惯性环节的比例系数变为K,则幅频特性成比例扩大K倍,而相频特性保持不变,即奈氏图仍为一个半圆,但圆心为(K/2,0),直径为K。        

  由惯性环节的奈氏图可知,惯性环节为低通滤波器,且输出滞后于输入,相位滞后范围为  0º→- 90º。、

   5、一阶微分环节

可见一阶微分环节的实频特性恒为1,而虚频特性与输入频率成正比。      当w从0变到无穷时,可以根据幅频特性与相频特性表达式描点绘制奈氏图,可以绘出三个点,见表

 根据这些数据绘出幅相频率特性,是平行于正虚轴向上无穷延伸的直线。

   由一阶微分环节的奈氏图可知,一阶微分环节具有放大高频信号的作用,输入频率越大,放大倍数越大;且输出超前于输入,相位超前范围为0º→90º,输出对输入有提前性、预见性作用。            一阶微分环节的典型实例是控制工程中常用的比例微分控制器(PD控制器),PD控制器常用于改善二阶系统的动态性能,但存在放大高频干扰信号的问题。

    6、二阶振荡环节(传递函数)

由频率响应可以判断出虚频特性恒≤0,故曲线必位于第三与第四象限。以阻尼比为参变量,计算不同频率w时的幅值和相角, 其中几个重要的特征点见表。  

在极坐标上画出w由0变到无穷时的矢量端点的轨迹,便可得到振荡环节的幅相频率特性,如图所示,且p1>p2。且振荡环节与负虚轴的交点频率为w=1/T,幅值为1/(2p)。

   由奈氏图可知,振荡环节具有相位滞后的作用,输出滞后于输入的范围为0º→-180º;同时阻尼比的取值对曲线形状的影响较大,可分为以下两种情况  

1.阻尼比大于0.707时,二阶振荡环节类似于惯性环节

2.阻尼比在0到0.707之间

7、延迟环节

        当频率为无穷时,输出相位滞后输入为无穷大。当w从0连续变化至无穷时,奈氏曲线沿原点作半径为1的无穷次旋转,τ越大,转动速度越大。   故延迟环节的奈氏图是一个以原点为圆心,半径为1的圆。即延迟环节可以不失真地复现任何频率的输入信号,但输出滞后于输入,而且输入信号

频率越高,延迟环节的输出滞后就越大。即在低频区,延迟环节的频率特性近似于惯性环节。从奈氏图也可见,二者的曲线在低频区基本重合。

延迟环节与其他典型环节相结合不影响幅频特性,但会使相频特性的最大滞后为无穷大。如某系统传递函数是惯性环节与延迟环节相结合,传递函数为可见随的增大,幅频特性A(w)单调减小,而相位滞后单调增加,相频特性p(w)从0°一直变化到负无穷大。故该系统的奈氏图是螺旋状曲线,绕原点顺时针旋转无穷次,最后终止于原点,与实轴、虚轴分别有无数个交点。

5.2.3  开环奈氏图的绘制

1.定义:          系统的频率特性有两种,由反馈点是否断开分为闭环频率特性Ф(jω)与开环频率特性Gk(jω),分别对应于系统的闭环传递函数Ф(s)与开环传递函数Gk(s)。由于系统的开环传递函数较易获取,并与系统的元件一一对应,在控制系统的频率分析法中,分析与设计系统一般是基于系统的开环频率特性。

由系统的开环频率特性可知,有多个典型环节组合而成的系统,其频率特性满足下面的规律

      控制系统是由典型环节组成的,则系统频率特性的绘制与典型环节的频率特性的绘制方法是基本相同的。可根据复变函数的性质求出系统开环频率特性的幅频特性A(w)与相频特性p(w)的表达式,或由分母有理化求出实频特性与虚频特性,再由奈氏图的基本绘制方法求出系统的开环奈氏图。

2.开环奈氏图基本绘制规律

当系统开环传递函数为多个典型环节组合时,其开环奈氏图的绘制与根轨迹的绘制类似,具有一定的规律。可以先根据开环传递函数的某些特征绘制出近似曲线,再利用A(w)j(w)等的表达式描点,在曲线的重要部分修正。

(1)低频段的确定(w→0)

低频段的相频为-90‘乘以v

由系统的型别不同,可知系统沿不同的曲线起始

可见低频段的形状(幅值与相位)

均与系统的型别v与开环传递系数K有关。

1.0型系统,=0:(0) =Kj(0)=

低频特性为实轴上的一点(K,0)。

2.Ⅰ型系统,v =1:A (0) =∞, j (0) = -90º

3.Ⅱ型系统,v =2:A (0) =∞, j (0) = -180º

(2)高频段(w→∞

不失一般性,假定系统开环传递函数全为不相等的负实数极点与零点。m为分子多项式的阶数, n为分母多项式的阶数且一般m<n

故A(无穷)=0,高频段终止于坐标原点;而最终相位为j)=-(n-m90°,n-m确定特性以什么角度进入坐标原点。

①(n-m)=1,则j(无穷)=-90°,即幅相特性沿负虚轴进入坐标原点。

②(n-m)=2,则j(无穷)=-180°,即幅相特性沿负实轴进入坐标原点。

③(n-m)=3,则j(无穷)=-270°,即幅相特性沿正虚轴进入坐标原点。

(3)奈氏图与实轴、虚轴的交点

将频率特性表达式按照分母有理化的方法分解为实部与虚部。

1)曲线与实轴的交点处的频率由虚部为0求出

Im[G(jw)]=I(w)=0

求出交点处的w,再代回频率特性表达式求出交点的坐标。

2)曲线与虚轴的交点处的频率由实部为0求出

Re[G(jw)]=R(w)=0

求出交点处的w,再代回频率特性表达式求出交点的坐标。

(4)开环零点对曲线的影响

1)如果系统的开环传递函数没有开环零点,则在w由0增大到无穷过程中,特性的相位单调连续减小(滞后连续增加),特性曲线平滑地变化。奈氏曲线应该是从低频段开始幅值逐渐减小,沿顺时针方向连续变化最后终于原点。

2)如果系统的开环传递函数有开环零点,则在w由0增大到无穷过程中,特性的相位不再是连续减小。视开环零点的时间常数的数值大小不同,特性曲线的相位可能在某一频段范围内呈增加趋势,此时,特性曲线出现凹部。

根据以上绘制规律,可以方便地绘制系统的开环概略奈氏图。

在0<w<无穷的区段,奈氏曲线的形状与所有典型环节及其参数有关,但通过奈氏曲线并不能非常直观地显示出系统的开环传递函数的结构与参数。

若该系统增加一个开环零点,

开环频率特性表达式为

由于增加了开环零点,所以奈氏曲线从低频段到高频段连续变化时,相位先滞后增加,达到一个滞后最大值后,相位滞后又开始减小(即相位增加),整条曲线出现了凹凸。

回顾开环奈氏图的绘制

下图列出了常见系统的开环传递函数与开环概略奈氏图。



关注作者了解更多

我的其他CSDN专栏

过程控制系统

工程测试技术

虚拟仪器技术

可编程控制器

工业现场总线

数字图像处理

智能控制

传感器技术

嵌入式系统

复变函数与积分变换

单片机原理

线性代数

大学物理

热工与工程流体力学

数字信号处理

光电融合集成电路技术

电路原理

模拟电子技术

高等数学

概率论与数理统计

数据结构

C语言

模式识别原理

自动控制原理

数字电子技术

关注作者了解更多

资料来源于网络,如有侵权请联系编者

<think>嗯,用户想了解幅频特性曲线的概念和绘制方法,特别是用MATLAB或Python来实现。首先,我需要先理清楚幅频特性曲线的基本定义,确保概念准确。幅频特性曲线应该是描述系统对不同频率信号的度响应,也就是输出与输入度比随频率变化的曲线。接下来是绘制方法,需要分步骤说明,比如如何从传递函数到计算频率响应,再绘制像。 然后,用户提到了MATLAB和Python的具体实现。我需要回忆这两种工具的关函数。MATLAB的话,可能用bode,或者自己计算传递函数的频率响应,然后绘。Python的话,可能会用到scipy.signal里的函数,比如freqs,或者control库,不过可能需要安装。记得用户提到的引用中有使用matplotlib的例子,所以可能需要手动计算频率响应,然后用matplotlib画。 还要注意用户提供的引用内容。引用[1]中的Python代码用了matplotlib,分两个子分别画频和频。引用[2]提到MATLAB和Python在绘制零极点时的差异,可能需要注意Python在某些情况下可能不显示原点的极点。引用[5]提到选择合适的频率范围和间隔,这点在代码中需要体现,比如使用对数刻度或者线性间隔。 可能需要分步骤讲解,先概念,再步骤,再具体代码实现。代码部分需要确保语法正确,特别是LaTeX格式的行内公式,比如$H(j\omega)$。同时,要检查是否需要使用$$...$$来显示独立公式,比如传递函数的表达式可能需要单独成段。 另外,用户的问题可能还涉及到如何从系统函数到频率响应的计算。需要解释传递函数如何代入s=jω,然后计算度和位。MATLAB的bode函数可能自动处理这些,但手动实现的话,需要说明如何计算。 可能还要提到幅频特性曲线的应用,比如在滤波器设计、控制系统分析中的作用。不过用户的问题主要是绘制方法,所以可能这部分可以放在后面的关问题里。 需要确保回答结构清晰,步骤明确。例如,先讲概念,再讲步骤,然后分MATLAB和Python分别给出示例代码,并解释代码中的关键点,比如频率范围的选择,如何计算值等。最后,根据用户的要求生成关问题,可能需要考虑曲线的应用、优化方法、手动计算步骤等。 要注意引用对应的参考资料,比如在提到选择频率范围时,引用[5]的建议,或者在代码部分引用[1]的示例。确保每个引用标识自然出现在关内容的末尾。 可能遇到的疑问点:Python中是否必须使用control库?如果用户没有安装这个库,可能需要给出替代方法,比如使用scipy.signal中的freqs函数来处理传递函数。例如,对于连续系统,传递函数是s域的,可以用freqs来计算频率响应。 另外,MATLAB的代码示例中,bode函数可能直接生成波德,但用户可能需要单独的曲线,所以可能需要从bode返回的数据中提取值,然后单独绘制,或者手动计算。引用[4]提到MATLAB的bode绘制方法,可能需要参考这点。 需要检查代码的正确性,比如在Python中使用scipy.signal.lti和freqresp,或者使用control库的bode函数。比如,如果使用control库,代码可能更简洁,但需要安装。否则,用scipy的话,可能需要更底层的处理。 例如,Python代码示例可能需要: 从scipy.signal导入lti, freqs 定义分子和分母系数,创建系统,然后计算频率响应,再取绝对值得到值,转换为分贝,然后绘。 在MATLAB中,使用tf创建传递函数,然后用bode或者直接计算频率响应。 总结步骤的话,可能包括: 1. 确定系统传递函数H(s) 2. 将s替换为jω,计算H() 3. 计算度|H()|,转换为分贝(20*log10) 4. 选择频率范围和点数(对数或线性) 5. 使用软件工具计算并绘制曲线 最后,生成关问题,可能需要包括曲线的应用场景、如何选择频率范围、手动计算的方法,或者与其他频响曲线的关系(比如频、奎斯特)等。</think>### 幅频特性曲线的概念与绘制方法 #### 一、概念解释 幅频特性曲线描述**线性时不变系统**对不同频率输入信号的度响应,表现为输出信号与输入信号的度比随频率变化的曲线。数学上可表示为$H(j\omega)$的模值,即: $$ |H(j\omega)| = 20 \log_{10} \left| \frac{输出度}{输入度} \right| \quad (\text{单位:dB}) $$ 例如,在滤波器设计中,可通过该曲线观察截止频率和通带衰减特性[^5]。 --- #### 二、绘制步骤(通用方法) 1. **获取系统函数** 从传递函数$H(s)$出发,例如二阶低通滤波器: $$ H(s) = \frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2} $$ 2. **计算频率响应** 将$s = j\omega$代入$H(s)$,得到复数形式的$H(j\omega)$,计算其模值$|H(j\omega)|$。 3. **选择频率范围** 通常采用对数坐标(如$10^{-2}$到$10^3$ rad/s),以覆盖关键频段[^5]。 4. **软件实现** 通过数值计算工具生成离散频率点并计算响应值。 --- #### 三、MATLAB实现 ```matlab % 定义传递函数:H(s) = 1/(s^2 + 0.5s + 1) num = [1]; den = [1, 0.5, 1]; sys = tf(num, den); % 绘制幅频特性曲线 figure; bode(sys); % 自动生成Bode(含频和频) grid on; % 若需单独提取值数据 [mag, phase, w] = bode(sys); mag_db = 20*log10(squeeze(mag)); semilogx(w, mag_db); title('Amplitude Frequency Response'); xlabel('Frequency (rad/s)'); ylabel('Magnitude (dB)'); ``` **关键点**:`bode`函数自动计算对数频率轴与分贝值[^4]。 --- #### 四、Python实现 ```python import numpy as np import matplotlib.pyplot as plt from scipy import signal # 定义传递函数:H(s) = 1/(s^2 + 0.5s + 1) num = [1] den = [1, 0.5, 1] system = signal.TransferFunction(num, den) # 生成频率点(对数范围) w = np.logspace(-2, 2, 500) # 10^-2到10^2 rad/s w, mag, phase = signal.bode(system, w) # 绘制曲线 plt.figure(figsize=(8, 4)) plt.semilogx(w, mag) plt.title('Amplitude Frequency Response') plt.xlabel('Frequency (rad/s)') plt.ylabel('Magnitude (dB)') plt.grid(True) plt.show() ``` **关键点**:`signal.bode`返回分贝值,`semilogx`确保横轴为对数坐标[^1][^2]。 --- #### 五、注意事项 - **频率范围选择**:需覆盖系统关键频段(如转折频率、谐振峰) - **分辨率调整**:高频区可适当增加采样点密度 - **单位转换**:值需转换为分贝,位单位为度 --- §§ 1. 如何手动计算传递函数的频响应? 2. 幅频特性曲线在滤波器设计中有哪些具体应用? 3. 为什么通常使用对数坐标绘制曲线? 4. MATLAB与Python在绘制零极点时有何差异? 5. 如何根据幅频特性判断系统稳定性?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迦勒底御主Z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值