目录
7.1 模糊数学概述
7.2 模糊集合
7.3 模糊关系与模糊矩阵
7.4 模糊模式分类的直接方法和间接方法
7.5 模糊聚类分析法
7.1 模糊数学概述
7.1.1 模糊数学的产生背景
模糊数学诞生的标志:1965年美国加利福尼亚大学控制 论专家L.A.Zadeh(查德)发表的文章“Fuzzy sets” 。 模糊数学(Fuzzy sets)又称模糊集合论。
1.精确数学方法及其局限性
1) 精确数学方法
忽略对象的一般特性,着重注意对象的数量、空间形式 和几何形状的数学方法。 如:牛顿力学、牛顿和莱布尼茨创立的微积分学等。
2) 近代科学的特点
(1) 理论研究方面:用精确定义的概念和严格证明的定理, 描述现实事物的数量关系和空间形式。
(2) 工程技术方面:用精确的实验方法和精确的测量计算, 探索客观世界的规律,建立严密的理论体系。
3) 精确数学方法的局限性
现实世界中的许多现象,用精确数学方法难以解决。 例如:著名的问题之一——秃头悖论
用精确数学方法判断“秃头”: 方法:首先给出一个精确的定义,然后推理,最后结论。
定义:头发根数≤n时,判决为秃头;否则判决为不秃。 即头发根数n为判断秃与不秃的界限标准。 问题:当头发根数恰好为n+1,应判决为秃还是不秃?
推理:两种选择
(1) 承认精确方法:判定为不秃。 结论:有n根头发的是秃头,有n+1根头发的不是秃头。
(2) 承认生活常识:认为仅一根头发之差不会改变秃与不秃的 结果,即有n+1根头发者也应是秃头。
那么采用传统的逻辑推理,会得到下面的一些命题:
头发为n根者为秃头,
头发为n+1根者为秃头,
头发为n+2根者为秃头,
…… 头发为n+k根者为秃头。
其中,k是一个有限整数,显然k完全可以取得很大。 结论:头发很多者为秃头。
2.模糊数学的诞生
模糊数学:有关描述和处理模糊性问题的理论和方法的学科。 模糊数学的基本概念:模糊性。
1965年查德(zadeh)发表了“模糊集合”论文后,在科学界引 起了爆炸性的反映,他准确地阐述了模糊性的含义,制定了刻画 模糊性的数学方法(隶属度、隶属函数、模糊集合等),为模糊 数学作为一门独立的学科建立了必要的基础。
7.1.2 模糊性
1.模糊性的基本概念
人们在认识事物时,总是根据一定的标准对事物进行分类, 有些事物可以依据某种精确的标准对它们进行界线明确的认识, 有些事物根本无法找出精确的分类标准,例如 “秃头悖论”中的 头发根数的界线n,实际是不存在的。
1) 清晰性:事物具有的明确的类属特性(或是或非)。
2) 模糊性:事物具有的不明确类属特性(只能区别程度、等级)。
3) 模糊性的本质:是事物类属的不确定性和对象资格程度的渐变性。
例:
2.与模糊性容易混淆的几个概念
1) 模糊性与近似性
① 共同点:描述上的不精确性。
② 区别:不精确性的根源和表现形式不同。
a) 近似性:问题本身有精确解,描述它时的不精确性源于认 识条件的局限性和认识过程发展的不充分性。 例:薄雾中观远山。
b) 模糊性:问题本身无精确解,描述的不精确性来源于对象 自身固有的性态上的不确定性。 例:观察一片秋叶。
2) 模糊性与随机性
① 共同点:不确定性。
② 区别:不确定性的性质不同。
a) 模糊性:表现在质的不确定性。是由于概念外延的模糊性而呈现出的不确定性。
b) 随机性:是外在的不确定性。是由于条件不充分,导致 条件与事件之间不能出现确定的因果关系,而事物本身 的性态和类属是确定的。 例:降雨量:大雨、中雨或小雨,典型的模糊性。 投掷硬币:随机性。
c) 排中律:即事件的发生和不发生必居且仅居其一,不存在 第三种现象。随机性遵守排中律,模糊性不遵守,它存在 着多种,甚至无数种中间现象。
3、模糊性与含混性
① 共同点:不确定性。 ② 区别:
a) 含混性:由信息不充分(二义性)引起,一个含混的命题 即是模糊的,又是二义的。一个命题是否带有含混性与其应 用对象或上下文有关。 b) 模糊性:是质的不确定性。
例:命题“张三很高” :对给张三购买什么型号的衣服这个应用对象是含混的。 也是一个模糊性命题。
总之,模糊性:由本质决定。 其 它:由外界条件带来的不确定性引起。
7.1.3 模糊数学在模式识别领域的应用
模式识别从模糊数学诞生开始就是模糊技术应用研究 的一个活跃领域,研究内容涉及:计算机图像识别、手书 文字自动识别、癌细胞识别、白血球的识别与分类、疾病 预报、各类信息的分类等。
研究方法: * 针对一些模糊识别问题设计相应的模糊模式识别系统。 *用模糊数学对传统模式识别中的一些方法进行改进。
7.2 模糊集合
7.2.1 模糊集合定义
1. 经典集合论中几个概念
传统经典集合论中的集合称为: 经典集合、普通集合、确定集合、脆集合。
1)论域
讨论集合前给出的所研究对象的范围。选取一般不唯一, 根据具体研究的需要而定。
2)子集
对于任意两个集合A、B,若A的每一个元素都是B的元素, 则称A是B的“子集”,记为 ;若B中存在不属于 A的元素,则称A是B的“真子集”,记为
3)幂集
对于一个集合A,由其所有子集作为元素构成的集合称 为A的“幂集”。 例:论域X={ 1, 2 },其幂集为
2.模糊集合的定义
说明
3.相关的几个概念

4.模糊集合的表示
有多种表示方法:要求表现出论域中所有元素与其对应的隶属度之间的关系。
常用的模糊集合表示方法:
7.2.2 隶属函数的确定
隶属函数是模糊集合赖以存在的基石。正确地确定隶属函 数是利用模糊集合恰当地定量表示模糊概念的基础。
常用的形式:S型函数:从0到1单调增长。
pi型函数:中间高两边低的函数。
隶属函数的确定:目前很难找到统一的途径。构造一个概念的隶属函数时,结果不唯一 。
几种隶属函数的构造与确定方法:
1.简单正规模糊集合隶属函数的构成

2. 模糊统计法:
利用模糊统计的方法确定隶属函数。
模糊统计试验四要素:
1)论域X,例如人的集合;
2)X中的一个元素x0,例如王平;
3)X中的一个边界可变的普通集合A,例如“高个子”;
4)条件s,制约着A边界的改变。
3. 二元对比排序法
从两种事物的对比中,做出对某一概念符合程度的判断。 是区别事物的一种重要方法。
缺点:往往不满足数学上对“序”的要求,不具有传递性,出现循环现象。
1)择优比较法
例7.4 求茶花、月季、牡丹、梅花、荷花对“好看的花”的隶 属度。
方法: 10名试验者逐次对两种花作对比,优胜花得1分,失败 者0分。
2)优先关系定序法
4. 推理法
根据不同的数学物理知识,设计隶属度函数,然后在实践 中检验调整。一般以成功的实例进行借鉴。
7.2.3 模糊集合的运算
1. 基本运算
两个模糊子集间的运算:逐点对隶属函数作相应的运算,得到新的隶属函数。在此过程中,论域保持不变。
2. 运算的基本性质


7.2.4 模糊集合与普通集合的相互转化
截集是联系普通集合与模糊集合的桥梁,它们使模糊集合 论中的问题转化为普通集合论的问题来解。
2. 截集的三个性质

下集讲模糊关系与模糊矩阵
资料仅供学习使用
如有错误欢迎留言交流
上理考研周导师的其他专栏:
上理考研周导师了解更多