拉格朗日乘子法和KKT条件的理解学习

如果本文有错误,特别欢迎大家指出。

目标: 我们的目标是在一定的限制条件下找到一个函数的最大、最小值。
正式的描述: 给定目标函数 f f f和定义在 Ω ∈ R n \Omega \in R^n ΩRn上的函数 g 1 , g 2 , . . . , g m g_1,g_2,...,g_m g1,g2,...,gm h 1 , h 2 , . . . , h l h_1,h_2,...,h_l h1,h2,...,hl,求函数 f f f的极值。数学表示为:
在这里插入图片描述
对于这个问题,下面会在以下4种情况下,得出(局部)最优的充分必要条件

  • 没有限制
  • 只有等式限制(拉格朗日)
  • 只有不等式限制(KKT)
  • 有不等式和等式限制

1.没有限制的优化

假设: f : Ω → R f:\Omega \rightarrow \R f:ΩR是一个连续可微函数。
局部最小的充分必要条件是:
x ∗ x^* x是函数 f ( x ) f(x) f(x)局部最小点,当且仅当:

  1. f f f x ∗ x^* x处的梯度为0,即
    在这里插入图片描述
  2. 函数 f f f的Hessian阵在 x ∗ x^* x是半正定的,即
    在这里插入图片描述

x ∗ x^* x是函数 f ( x ) f(x) f(x)局部最大点,当且仅当:

  1. f f f x ∗ x^* x处的梯度为0,即
    在这里插入图片描述
  2. 函数 f f f的Hessian阵在 x ∗ x^* x是半负定的,即
    在这里插入图片描述

2 受限的优化:等式约束

受限等式约束优化问题:
在这里插入图片描述
函数 f f f的等值线:
在这里插入图片描述
加上可行区域(feasible region):
在这里插入图片描述
加上可行点 X F X_F XF:
在这里插入图片描述

寻找一个 δ x \delta x δx满足 h ( X F + α δ x ) = 0 h(X_F+\alpha \delta x)=0 h(XF+αδx)=0 f ( X F + α δ x ) < f ( X F ) f(X_F+\alpha \delta x)<f(X_F) f(XF+αδx)<f(XF),就可以实现优化的一小步。
从点 x x x移动 δ x \delta x δx需要满足:
在这里插入图片描述
图示为:
在这里插入图片描述
留在约束面上的条件:求约束 h h h的法线 ∇ x h ( x ) \nabla_xh(x) xh(x)。如图:
在这里插入图片描述
留在约束面上的条件如图:
在这里插入图片描述
为了让在约束面上的点移动 δ x \delta x δx后依然在约束面上,这个点移动的方向要和法线正交。
总结:
如果点 X F X_F XF在约束面上,

  • 设置 δ x \delta x δx ∇ x h ( x F ) \nabla_xh(x_F) xh(xF)正交,可以保证 h ( x F + δ x ) = 0 h(x_F+\delta x)=0 h(xF+δx)=0
  • 只有当 δ x ∗ ( − ∇ x f ( x F ) ) > 0 \delta x*(-\nabla_xf(x_F))>0 δx(xf(xF))>0,才有 f ( x F + δ x ) < f ( x F ) f(x_F+\delta x)<f(x_F) f(xF+δx)<f(xF)

∇ x f ( x ∗ ) \nabla_xf(x^*) xf(x) ∇ x h ( x ∗ ) \nabla_xh(x^*) xh(x)平行的时候, x ∗ x^* x就是局部最小点。如图:
在这里插入图片描述
还记得我们的优化问题是:
在这里插入图片描述
在这里插入图片描述
多个不等式限制的问题为:在这里插入图片描述
构造Lagrangian(对每个等式限制引入一个乘子):
在这里插入图片描述


3 受限优化:不等式约束

考虑问题:
在这里插入图片描述
图示一下:
在这里插入图片描述
我们怎么认定 X F X_F XF是局部最小值呢?
在这里插入图片描述
所以最小值的条件和无限制情况下相同,即:

问题(满足上述条件的可行解不在可行阈之内):
在这里插入图片描述
图示一下:
在这里插入图片描述
怎么确定 X F X_F XF是一个局部最小值?
在这里插入图片描述
这相当于把不等式约束转化为等式约束。如图:
在这里插入图片描述
总结:
在这里插入图片描述
最后KKT条件为:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值