约束优化问题的最优性条件(KKT条件)

等式约束问题

问题形式:
min ⁡ f ( x ) , x ∈ R n  s.t.  h i ( x ) = 0 , i = 1 , 2 , ⋯   , l (1) \begin{array}{ll} \min f(\boldsymbol{x}), & \boldsymbol{x} \in \mathbf{R}^{n} \\ \text { s.t. } h_{i}(\boldsymbol{x})=0, & i=1,2, \cdots, l \end{array} \qquad \tag {1} minf(x), s.t. hi(x)=0,xRni=1,2,,l(1)
做问题(1)的拉格朗日函数:
L ( x , λ ) = f ( x ) − ∑ i = 1 l λ i h i ( x ) L(\boldsymbol{x}, \boldsymbol{\lambda})=f(\boldsymbol{x})-\sum_{i=1}^{l} \lambda_{i} h_{i}(\boldsymbol{x}) L(x,λ)=f(x)i=1lλihi(x)
其中, λ = ( λ 1 , λ 2 , ⋯   , λ l ) T \lambda = (\lambda_1,\lambda_2,\cdots,\lambda_l)^T λ=(λ1,λ2,,λl)T为乘子向量。

等式的KKT条件

问题(1)取极小值的一阶必要条件,也就是通常所说的KKT条件(Karush-Kuhn-Tucker条件):

定理 1 设问题(1)的局部极小点为: x ∗ x^* x,函数 f ( x ) 和 h i ( x ) ( i = 1 , 2 , ⋯   , l ) f(x)和h_i(x)(i=1,2,\cdots,l) f(x)hi(x)(i=1,2,,l) x ∗ x^* x的某邻域连续可微,向量组 ∇ h i ( x ∗ ) \nabla h_i(x^*) hi(x)线性无关,则存在乘子向量 λ = ( λ 1 , λ 2 , ⋯   , λ l ) T \lambda = (\lambda_1,\lambda_2,\cdots,\lambda_l)^T λ=(λ1,λ2,,λl)T使得:
∇ x L ( x ∗ , λ ∗ ) = 0 \nabla_{x} L\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right)=\mathbf{0} xL(x,λ)=0
即:
∇ f ( x ∗ ) − ∑ i = 1 l λ i ∗ ∇ h i ( x ∗ ) = 0 \nabla f\left(\boldsymbol{x}^{*}\right)-\sum_{i=1}^{l} \lambda_{i}^{*} \nabla h_{i}\left(\boldsymbol{x}^{*}\right)=\mathbf{0} f(x)i=1lλihi(x)=0
问题(1)取极小值的二阶必要条件,需用到(2)式的拉格朗日函数的梯度和Hesse矩阵,即;
∇ L ( x , λ ) = ( ∇ x L ( x , λ ) ∇ λ L ( x , λ ) ) = ( ∇ f ( x ) − ∑ i = 1 l λ i ∇ h i ( x ) − h ( x ) ) ∇ x x 2 L ( x , λ ) = ∇ 2 f ( x ) − ∑ i = 1 l λ i ∇ 2 h i ( x ) \begin{array}{l} \nabla L(\boldsymbol{x}, \boldsymbol{\lambda})=\left(\begin{array}{c} \nabla_{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{\lambda}) \\ \nabla_{\boldsymbol{\lambda}} L(\boldsymbol{x}, \boldsymbol{\lambda}) \end{array}\right)=\left(\begin{array}{c} \nabla f(\boldsymbol{x})-\sum_{i=1}^{l} \lambda_{i} \nabla h_{i}(\boldsymbol{x}) \\ -\boldsymbol{h}(\boldsymbol{x}) \end{array}\right) \\ \nabla_{\boldsymbol{x} \boldsymbol{x}}^{2} L(\boldsymbol{x}, \boldsymbol{\lambda})=\nabla^{2} f(\boldsymbol{x})-\sum_{i=1}^{l} \lambda_{i} \nabla^{2} h_{i}(\boldsymbol{x}) \end{array} L(x,λ)=(xL(x,λ)λL(x,λ))=(f(x)i=1lλihi(x)h(x))xx2L(x,λ)=2f(x)i=1lλi2hi(x)
若考虑二阶充分性条件,还需要目标函数和约束函数都是二阶连续可微的。

定理 2 函数 f ( x ) 和 h i ( x ) ( i = 1 , 2 , ⋯   , l ) f(x)和h_i(x)(i=1,2,\cdots,l) f(x)hi(x)(i=1,2,,l)二阶连续可微,且存在 ( x ∗ , λ ∗ ) ∈ R n × R l (x^*,\lambda^*) \in R^n \times R^l (x,λ)Rn×Rl使得 ∇ L ( x ∗ , λ ∗ ) = 0 \nabla L\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right)=\mathbf{0} L(x,λ)=0。对 ∀ d ≠ 0 ∈ R n , ∇ h i ( x ∗ ) T d = 0 ( i = 1 , 2 , . . . l ) \forall d \neq 0 \in R^n,\nabla h_i(x^*)^Td=0(i=1,2,...l) d=0Rn,hi(x)Td=0(i=1,2,...l),均有 d T ∇ x x 2 L ( x ∗ , λ ∗ ) d > 0 d^T \nabla_{\boldsymbol{x} \boldsymbol{x}}^{2}L\left(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}\right) d > 0 dTxx2L(x,λ)

  • 5
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值