Redis做为缓存,如何保证一致性:
1.延迟双删策略:
- 当需要从数据库中删除数据时,首先删除Redis中的数据。
- 然后延迟一段时间(例如几百毫秒)再删除数据库中的数据。
- 在延迟的过程中可能出现脏数据
2.redisson实现的读写锁
- 在读的时候添加共享锁,可以保证读读不互斥,读写互斥。
- 当我们更新数据的时候,添加排他锁,它是读写,读读都互斥.其实排他锁底层使用也是setnx,保证了同时只能有一个线程操作锁住的方法
- 这样就能保证在写数据的同时阻塞其他线程读写操作,避免了脏数据
- 这里面需要注意的是读方法和写方法上需要使用同一把锁才行。
3.使用消息队列:
-
- 当数据库更新成功后,发布一个消息到消息队列(如Kafka、RabbitMQ等)。
- Redis的消费者监听这个消息队列,当收到消息后,从数据库中读取最新的数据并更新到Redis。
- 这种方式可以实现异步更新,减轻系统压力,并且可以通过重试机制保证数据最终一致性。
4.阿里的canal
我们当时采用的阿里的canal组件实现数据同步:不需要更改业务代码,部署一个canal服务。canal服务把自己伪装成mysql的一个从节点,当mysql数据更新以后,canal会读取binlog数据,然后在通过canal的客户端获取到数据,更新缓存即可。