CLBP纹理描述符是在LBP描述符基础上扩展的纹理描述符,它有效描述 LBP 类型的遗失信息,以便获得更好的纹理分类性能。在2010年,由Guo等人提出。
1.基本原理
在完全局部二值模式(CLBP)中,局部区域可以由中心像素和局部差分的符号-幅度变换((local differencesign-magnitude transform,LDMT)来描述。
CLBP由3部分组成。分别是全局对比度CLBP_C,正负二值模式CLBP_S和幅度二值模式CLBP_M。
其中,中心像素通过全局阈值形成二值编码,称为CLBP_C:
g
c
g_{c}
gc表示某一点的中心像素,
c
I
c_{I}
cI表示图像像素的平均灰度值。
另外,局部差分符号-幅度变换可以将图像局部纹理结构分解成为两种互补成分,即正负二值模式
CLBP_ S,幅度二值模式 CLBP_ M。所述的三种二值编码可以任意组合构成最终的CLBP 直方图,能实现比传统的 LBP 更有效的旋转不变分类能力。
通常,给定一个中心像素和其他 P 个邻域值,则局部差向量表示为 [
d
0
,
.
.
.
,
d
p
−
1
d_{0},...,d_{p-1}
d0,...,dp−1]。
其中
d
p
=
g
p
−
g
c
d_{p}=g_{p}-g_{c}
dp=gp−gc,
d
p
d_{p}
dp利用LDMT分解成2个部分,即:
其中,
S
p
=
{
1
,
d
p
≥
0
−
1
,
d
p
<
0
S_p=\left\{\begin{array}{l}1,d_p\geq0\\-1,d_p<0\end{array}\right.\\
Sp={1,dp≥0−1,dp<0
s
p
s_{p}
sp和
m
p
m_{p}
mp分别是
d
p
d_{p}
dp的符号和幅度值。
CLBP_S描述子的公式和传统的LBP描述子相似:
定义CLBP_M:
其中,
c
c
c是自适应阈值,由整个图像中
m
p
m_{p}
mp的均值来表示。与
L
B
P
P
,
R
r
i
u
2
LBP_{P,R}^{riu2}
LBPP,Rriu2类似,
C
L
B
P
_
M
P
,
R
CLBP\_M_{P,R}
CLBP_MP,R的旋转不变版本可以定义为
C
L
B
P
_
M
P
,
R
r
i
u
2
CLBP\_M_{P,R}^{riu2}
CLBP_MP,Rriu2,同样可以实现旋转不变的纹理分类。
下面为CLBP描述符的示意图:
在纹理分类中,CLBP 可以有两种方式组合,即串联和联合方式。 CLBP_S/M/C是三维的联合直方图,而 CLBP_M_S/C是由联合直方图 CLBP_S/C与 CLBP_M 串联而成的。
在 Outex 纹理数据库中, CLBP_ S比 CLBP_ M实现更好地分类结果,由此可知纹理的符号信息比幅度信息更具有描述纹理的能力。另外,结合中心像素的描述信息, CLBP_M/C 比 CLBP_ M获得较好效果, CLBP_ S/M/C比 CLBP_S/M 具有更高准确率。但是不同融合方式会造成不一样的计算复杂度,例如当P=24时,
C
L
B
P
_
S
P
,
R
r
i
u
2
/
M
P
,
R
r
i
u
2
/
C
CLBP\_S_{P,R}^{riu2}/M_{P,R}^{riu2}/C
CLBP_SP,Rriu2/MP,Rriu2/C的特征维度是 1352(26x26x2),而
C
L
B
P
_
S
P
,
R
r
i
u
2
_
M
P
,
R
r
i
u
2
/
C
CLBP\_S_{P,R}^{riu2}\_M_{P,R}^{riu2}/C
CLBP_SP,Rriu2_MP,Rriu2/C的维度为78(26+26x2)。虽然两种融合方法都有优缺点,具体应用哪一种方案需要针对具体 的需求来选择。
附:论文源码matlab代码实现
参考文献:《基于 Contourlet 变换和局部二值模式图像纹理分类研究及其应用》