完全局部二值模式(CLBP)学习

    CLBP纹理描述符是在LBP描述符基础上扩展的纹理描述符,它有效描述 LBP 类型的遗失信息,以便获得更好的纹理分类性能。在2010年,由Guo等人提出。

1.基本原理

    在完全局部二值模式(CLBP)中,局部区域可以由中心像素和局部差分的符号-幅度变换((local differencesign-magnitude transform,LDMT)来描述。
    CLBP由3部分组成。分别是全局对比度CLBP_C,正负二值模式CLBP_S和幅度二值模式CLBP_M。
    其中,中心像素通过全局阈值形成二值编码,称为CLBP_C:
在这里插入图片描述
g c g_{c} gc表示某一点的中心像素, c I c_{I} cI表示图像像素的平均灰度值。
    另外,局部差分符号-幅度变换可以将图像局部纹理结构分解成为两种互补成分,即正负二值模式
CLBP_ S,幅度二值模式 CLBP_ M。所述的三种二值编码可以任意组合构成最终的CLBP 直方图,能实现比传统的 LBP 更有效的旋转不变分类能力。
    通常,给定一个中心像素和其他 P 个邻域值,则局部差向量表示为 [ d 0 , . . . , d p − 1 d_{0},...,d_{p-1} d0,...,dp1]。
    其中 d p = g p − g c d_{p}=g_{p}-g_{c} dp=gpgc, d p d_{p} dp利用LDMT分解成2个部分,即:
在这里插入图片描述
其中, S p = { 1 , d p ≥ 0 − 1 , d p < 0 S_p=\left\{\begin{array}{l}1,d_p\geq0\\-1,d_p<0\end{array}\right.\\ Sp={1,dp01,dp<0
s p s_{p} sp m p m_{p} mp分别是 d p d_{p} dp的符号和幅度值。
CLBP_S描述子的公式和传统的LBP描述子相似:
在这里插入图片描述
定义CLBP_M:
在这里插入图片描述
    其中, c c c是自适应阈值,由整个图像中 m p m_{p} mp的均值来表示。与 L B P P , R r i u 2 LBP_{P,R}^{riu2} LBPP,Rriu2类似, C L B P _ M P , R CLBP\_M_{P,R} CLBP_MP,R的旋转不变版本可以定义为 C L B P _ M P , R r i u 2 CLBP\_M_{P,R}^{riu2} CLBP_MP,Rriu2,同样可以实现旋转不变的纹理分类。
    下面为CLBP描述符的示意图:
在这里插入图片描述
    在纹理分类中,CLBP 可以有两种方式组合,即串联和联合方式。 CLBP_S/M/C是三维的联合直方图,而 CLBP_M_S/C是由联合直方图 CLBP_S/C与 CLBP_M 串联而成的。
    在 Outex 纹理数据库中, CLBP_ S比 CLBP_ M实现更好地分类结果,由此可知纹理的符号信息比幅度信息更具有描述纹理的能力。另外,结合中心像素的描述信息, CLBP_M/C 比 CLBP_ M获得较好效果, CLBP_ S/M/C比 CLBP_S/M 具有更高准确率。但是不同融合方式会造成不一样的计算复杂度,例如当P=24时, C L B P _ S P , R r i u 2 / M P , R r i u 2 / C CLBP\_S_{P,R}^{riu2}/M_{P,R}^{riu2}/C CLBP_SP,Rriu2/MP,Rriu2/C的特征维度是 1352(26x26x2),而 C L B P _ S P , R r i u 2 _ M P , R r i u 2 / C CLBP\_S_{P,R}^{riu2}\_M_{P,R}^{riu2}/C CLBP_SP,Rriu2_MP,Rriu2/C的维度为78(26+26x2)。虽然两种融合方法都有优缺点,具体应用哪一种方案需要针对具体 的需求来选择。

附:论文源码matlab代码实现
参考文献:《基于 Contourlet 变换和局部二值模式图像纹理分类研究及其应用》

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值