点到圆的最近距离公式推导

该距离公式在 Circle Fitting相关的一篇文章中用到,现实现其推导过程:

设圆的一般的方程形式:,任一点P的坐标,点P到圆上点得最短距离的公式?

推导过程:

(1)由圆一般方程形式可以推导出圆的标准方程形式:

        ,且有:,即:

        圆心坐标:  ;半径:

(2)点到圆的最短距离

       点到圆的最短距离等于点到圆心的距离减去半径的绝对值;

       那么点在圆外(点在圆内时取绝对值即可):

      

       将展开:

             代入(1)可得:

      

      令,且,那么

          

(3)综上,在的条件下:

        

  

### 计算椭上某一到中心距离 在几何学中,椭的标准方程为: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \] 其中 \( a \) 和 \( b \) 分别代表椭的半长轴和半短轴长度。假设椭的中心位于原 (0, 0),那么对于椭上的任意一 \( P(x, y) \),可以通过以下方式计算该到椭中心的距离。 #### 距离公式推导 根据两距离公式,椭上任一 \( P(x, y) \) 到中心 (0, 0) 的欧几里得距离为: \[ d = \sqrt{x^2 + y^2} \] 由于 \( P(x, y) \) 是椭上的,因此满足标准方程约束条件: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \] 由此可得出 \( y^2 \) 表达式为: \[ y^2 = b^2 \left( 1 - \frac{x^2}{a^2} \right) \] 将此表达式代入距离公式,则有: \[ d = \sqrt{x^2 + b^2 \left( 1 - \frac{x^2}{a^2} \right)} \] 进一步化简得到最终形式: \[ d = \sqrt{\frac{(a^2 - b^2)x^2}{a^2} + b^2} \] 这是椭上任意一到中心距离公式[^1]。 #### Java实现代码 以下是基于上述公式的Java实现代码示例: ```java public class EllipseDistanceCalculator { public static double calculateDistance(double x, double a, double b) { double term1 = ((a * a - b * b) / (a * a)) * (x * x); double term2 = b * b; return Math.sqrt(term1 + term2); } public static void main(String[] args) { // 示例:给定椭参数 a=5, b=3 及 x 值 double a = 5; // 半长轴 double b = 3; // 半短轴 double x = 4; // 给定的横坐标 double distance = calculateDistance(x, a, b); System.out.println("椭 (" + x + ", ?) 到中心距离为:" + distance); } } ``` #### 输出解释 运行以上程序会输出指定到椭中心的距离值。注意输入的 \( x \) 应当满足椭范围内的有效取值区间 [-\( a \), \( a \)],否则可能导致错误的结果或异常行为。 --- ### 注意事项 如果需要判断某个是否位于椭内部,可以利用标准化后的距离指标 \( D \): \[ D = \frac{x^2}{a^2} + \frac{y^2}{b^2} \] - 当 \( D < 1 \): 位于椭内部; - 当 \( D = 1 \): 正好落在椭边界上; - 当 \( D > 1 \): 位于椭外部[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值