目录
参考论文《5G NR中PUCCH多用户复用技术的研究》
多用户检测技术是同时复用某个信道的全部或某些资源,通过一定的技术手段来抑制或减弱其他用户对某个用户的影响,并同时检测出所有这些用户或某些用户的信息的一种检测方法。
在用户量较少时,传统的算法性能受多址的干扰较少。但随着 5G NR 系统的推广,设备数将会大大的超过现有的水平。 再由于多径衰落等环境的影响,各用户间所采用的扩频码正交性受到破坏,也导致了多用户之间的干扰,限制系统容量。
多用户检测技术的分类
用户侧的多用户检测技术
经典的码分多址检测器采用相关器、匹配滤波器等,是最简单的多址干扰抑制的方法。
基站侧的多用户检测技术
对于基站侧的多用户检测技术而言,经典的检测算法有最大自然序列估计算法(MLSE),非线性最优多用户检测和线性最优多用户检测。
最大自然序列估计算法
最大自然序列估计算法(MLSE)由 S. Verdu 提出,该算法主要依据贝叶斯最大后验概率准则,因此也被称为最优检测算法。该算法在高斯信道中具有良好的性能,理论上可使每个用户都获得最小的误码率,是一种最佳的检测方案。但最大自然序列估计算法在检测时实现的难度大,并且随着用户数的增加,实现该系统的复杂度将呈指数增长,所以在实际应用中很难实现。且最优检测算法需要在解调时知道所有用户的相位定时、扩频码及相关特性,才能使得所有用户准确解调,但是在实际过程中,由于扩频码之间的正交性被破坏等因素,故不适用于信道状态较差的信道。
非线性次优化多用户检测算法
非线性次优化多用户检测算法,一般采用复杂度较低且收敛较快的检测方法。常用的非线性多用户检测算法有干扰抵消型多用户检测、分组检测型多用户检测、序列检测型多用户检测和神经网络型多用户检测。
其中最常用的是干扰检测中的串行干扰消除和并行干扰消除的算法。
- 串行干扰消除是使用串行的方式,每一级将根据用户信号的功率从高到低排列确定功率最大的用户来生成信号,在接收的信号中,将该用户生成信号去除后进行下一级序列检测,这样逐个的将用户检测出来,但实际应用中该算法对系统的实时性造成很大的影响。
- 并行干扰消除是并行的处理消除干扰,可以分为硬判决和软判决,它综合的考虑了用户的性能和系统的容量,具有延迟小的特点,但是相较于其他的算法,并行干扰消除的算法计算量大,实现复杂,且当某一级对用户发生误判时会产生误差传播的现象。因此使用时需要根据实际场景选择合适的算法。
线性多用户检测算法
线性多用户检测算法相较于最优检测算法而言更适合较差的信道。常见的线性多用户检测算法有,基于多项式分解型和自适应型。
其中,多用户自适应检测器采用了传统的匹配滤波,利用训练序列来进行调整,由于其滤波器抽头只有 K 个,收敛速度快,且目前带有训练序列的自适应算法也比较成熟,因此该算法在通信系统中有较为广泛的应用。在自适应算法中普遍使用的是盲自适应算法,该算法仅仅需要知道一个发送波形或一个接收波形,不需要在信道中频繁的发送训练序列,就可以节约大量的设备能源,降低射频成本。
多用户检测技术的技术指标
对于多用户检测来说,能否正常的分辨出每个用户的信息尤为关键,而衡量提取的信息是否有效的指标主要为:
- 误码率(Bit error ratio,BER)
- 渐进有效性(Asympotic Multi-user Efficiency)
- 抗远近能力(Near-Far resistance)
误码率
误码率衡量了一个通信系统最基本的性能指标,指示该系统传输的信号可信度的一个统计值。误码率的定义为错误比特数量和总比特数量的比值。
由于在计算过程中对于比特数目统计有一定的困难,且在信号传输的过程中由于噪声或其他的小区或本小区用户的干扰,会在接收时造成偏差使得发送的信号造成错误译码,因此可以表示为在数据传输系统中信号功率与噪声功率的比值。
渐进有效性
渐进有效性是渐近多用户有效性的简称,它是衡量干扰用户对于目标用户误码率影响的技术指标。多用户有效性定义为多用户系统达到单用户系统相同误码率所需能量与单用户系统所需能量之比。
抗远近能力
如果干扰用户距离基站的距离比目标用户距离基站近,则干扰信号在基站的接收功率会比目标用户的接收功率大很多,这样传统接收机的输出中会产生多址干扰分量,甚至会出现淹没目标用户信号的现象,此现象被称为远近效应。
抗远近能力一般取决于扩频波形和解调器。
抗远近能力是用来描述多用户检测器抵消远近效应能力的技术指标,它定义为在所有相关用户能量范围内测量到的最坏情况下的渐进有效性。