【算法分析】
解法1:遍历外圈
遍历整个地图的外圈(第1行、第1列、第10行,第10列),从外圈所有标记为0的位置开始搜索,把搜索到的位置标记为2。此时所有值为2的位置都是图形外面的位置,值为1的位置是图形的边线,值为0的位置为图形内。统计值为0的位置是数量,即为该图形的面积。
解法2:构造外圈连通块
由于图形的边线就可以在整个地图的外圈,为了让整个图形外面的区域构成一个完整的连通块,我们可以人为扩大地图边界。原来地图的行、列是1到10。现在扩展出第0行、第0列、第11行、第11列,这几行几列的标记都为0。扩展后的行列与原图形外面的位置会形成一个完整的连通块。此时只需要从(0,0)位置开始一次搜索,就可以将整个连通块中每个位置都标记为2。后面还是统计值为0的位置的数量。
该题用广搜和深搜课可以解题。
解法1广搜代码
#include<bits/stdc++.h>
using namespace std;
#define N 15
struct Node
{
int x, y;
Node(){}
Node(int a, int b):x(a), y(b){}
};
int n, a[N][N], ans;//a[i][j]:(i,j)位置标记的数字
int dir[4][2] = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
void bfs(int sx, int sy)
{
queue<Node> que;
a[sx][sy] = 2;
que.push(Node(sx, sy));
while(que.empty() == false)
{
Node u = que.front();
que.pop();
for(int i = 0; i < 4; ++i)
{
int x = u.x + dir[i][0], y = u.y + dir[i][1];
if(x >= 1 && x <= n && y >= 1 && y <= n && a[x][y] == 0)
{
a[x][y] = 2;
que.push(Node(x, y));
}
}
}
}
int main()
{
n = 10;//地图范围:行列1~n
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
cin >> a[i][j];
for(int i = 1; i <= n; ++i)//遍历外圈
{
if(a[1][i] == 0)
bfs(1, i);
if(a[n][i] == 0)
bfs(n, i);
if(a[i][1] == 0)
bfs(i, 1);
if(a[i][n] == 0)
bfs(i, n);
}
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
{
if(a[i][j] == 0)
ans++;//面积加1
}
cout << ans;
return 0;
}
解法2广搜代码
#include<bits/stdc++.h>
using namespace std;
#define N 15
struct Node
{
int x, y;
Node(){}
Node(int a, int b):x(a), y(b){}
};
int n, a[N][N], ans;//a[i][j]:(i,j)位置标记的数字
int dir[4][2] = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
void bfs(int sx, int sy)
{
queue<Node> que;
a[sx][sy] = 2;
que.push(Node(sx, sy));
while(que.empty() == false)
{
Node u = que.front();
que.pop();
for(int i = 0; i < 4; ++i)
{
int x = u.x + dir[i][0], y = u.y + dir[i][1];
if(x >= 0 && x <= n+1 && y >= 0 && y <= n+1 && a[x][y] == 0)//地图范围为0~n+1
{
a[x][y] = 2;
que.push(Node(x, y));
}
}
}
}
int main()
{
n = 10;//扩展边界后,地图范围:行列 0~n+1
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
cin >> a[i][j];
bfs(0, 0);
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= n; ++j)
{
if(a[i][j] == 0)
ans++;//面积加1
}
cout << ans;
return 0;
}