1359:围成面积

文章介绍了两种方法来解决一个二维图形外部面积问题,通过遍历外圈并标记边界,利用广度优先搜索(BFS)将图形外部区域标记为2,最后统计值为0的点的数量作为面积。第一种方法逐个遍历边界,第二种方法则在边界外扩展一格形成连通块进行一次搜索。
摘要由CSDN通过智能技术生成

【算法分析】

 解法1:遍历外圈      

       遍历整个地图的外圈(第1行、第1列、第10行,第10列),从外圈所有标记为0的位置开始搜索,把搜索到的位置标记为2。此时所有值为2的位置都是图形外面的位置,值为1的位置是图形的边线,值为0的位置为图形内。统计值为0的位置是数量,即为该图形的面积。

解法2:构造外圈连通块
由于图形的边线就可以在整个地图的外圈,为了让整个图形外面的区域构成一个完整的连通块,我们可以人为扩大地图边界。原来地图的行、列是1到10。现在扩展出第0行、第0列、第11行、第11列,这几行几列的标记都为0。扩展后的行列与原图形外面的位置会形成一个完整的连通块。此时只需要从(0,0)位置开始一次搜索,就可以将整个连通块中每个位置都标记为2。后面还是统计值为0的位置的数量。

该题用广搜和深搜课可以解题。

解法1广搜代码

#include<bits/stdc++.h>
using namespace std;
#define N 15
struct Node
{
    int x, y;
    Node(){}
    Node(int a, int b):x(a), y(b){}
};
int n, a[N][N], ans;//a[i][j]:(i,j)位置标记的数字 
int dir[4][2] = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
void bfs(int sx, int sy)
{
    queue<Node> que;
    a[sx][sy] = 2;
    que.push(Node(sx, sy));
    while(que.empty() == false)
    {
        Node u = que.front();
        que.pop();
        for(int i = 0; i < 4; ++i)
        {
            int x = u.x + dir[i][0], y = u.y + dir[i][1];
            if(x >= 1 && x <= n && y >= 1 && y <= n && a[x][y] == 0)
            {
                a[x][y] = 2;
                que.push(Node(x, y));
            }    
        }
    }
}
int main()
{
    n = 10;//地图范围:行列1~n 
	for(int i = 1; i <= n; ++i)
		for(int j = 1; j <= n; ++j)
			cin >> a[i][j];
	for(int i = 1; i <= n; ++i)//遍历外圈 
    {
        if(a[1][i] == 0)
            bfs(1, i);
        if(a[n][i] == 0)
            bfs(n, i);
        if(a[i][1] == 0)
            bfs(i, 1);
        if(a[i][n] == 0)
            bfs(i, n);
    }
	for(int i = 1; i <= n; ++i)
		for(int j = 1; j <= n; ++j)
		{
			if(a[i][j] == 0)
			    ans++;//面积加1 
		}
	cout << ans;
	return 0;
}

解法2广搜代码

#include<bits/stdc++.h>
using namespace std;
#define N 15
struct Node
{
    int x, y;
    Node(){}
    Node(int a, int b):x(a), y(b){}
};
int n, a[N][N], ans;//a[i][j]:(i,j)位置标记的数字 
int dir[4][2] = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
void bfs(int sx, int sy)
{
    queue<Node> que;
    a[sx][sy] = 2;
    que.push(Node(sx, sy));
    while(que.empty() == false)
    {
        Node u = que.front();
        que.pop();
        for(int i = 0; i < 4; ++i)
        {
            int x = u.x + dir[i][0], y = u.y + dir[i][1];
            if(x >= 0 && x <= n+1 && y >= 0 && y <= n+1 && a[x][y] == 0)//地图范围为0~n+1
            {
                a[x][y] = 2;
                que.push(Node(x, y));
            }
        }
    }
}
int main()
{
    n = 10;//扩展边界后,地图范围:行列 0~n+1 
	for(int i = 1; i <= n; ++i)
		for(int j = 1; j <= n; ++j)
			cin >> a[i][j];
	bfs(0, 0);
	for(int i = 1; i <= n; ++i)
		for(int j = 1; j <= n; ++j)
		{
			if(a[i][j] == 0)
			    ans++;//面积加1 
		}
	cout << ans;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值