解决面试题思路——画图让抽象问题形象化

面试题27:二叉树的镜像

class Solution {
public:
    TreeNode* mirrorTree(TreeNode* root) {
        if(root != NULL){
            TreeNode* temp = root->left;
            root->left = root->right;
            root->right = temp;
            mirrorTree(root->left);
            mirrorTree(root->right);
        }        
        return root;
    }
};

面试题28:对称的二叉树

class Solution {
public:
    bool isSymmetric(TreeNode* root) {
        if(root == NULL)
            return true;
        return helper(root->left, root->right);
    }
    bool helper(TreeNode* lp, TreeNode* rp){
        if(lp == NULL && rp == NULL)
            return true;
        if(lp == NULL || rp == NULL)
            return false;
        if(lp->val == rp->val)
            return helper(lp->left, rp->right) && helper(lp->right, rp->left);
        return false;
    }
};

面试题29:顺时针打印数组

class Solution {
public:
    vector<int> spiralOrder(vector<vector<int>>& matrix) {
        vector<int> ans;
        int n = matrix.size();
        if(n == 0)
            return ans;
        int m = matrix[0].size();
        vector<vector<int> > mark(n, vector<int>(m, 0));

        int i = 0, j = 0, cnt = 0;
        ans.push_back(matrix[0][0]);
        mark[0][0] = 1;
        while(ans.size() < m*n){
        	\\ 先向右再向下再向左最后向上
            while(j+1 < m && mark[i][j+1] == 0){
                j += 1;
                mark[i][j] = 1;
                ans.push_back(matrix[i][j]);
            }
            while(i+1 < n && mark[i+1][j] == 0){
                i += 1;
                mark[i][j] = 1;
                ans.push_back(matrix[i][j]);
            }
            while(j-1 >= 0 && mark[i][j-1] == 0){
                j -= 1;
                mark[i][j] = 1;
                ans.push_back(matrix[i][j]);
            }
            while(i-1 >= 0 && mark[i-1][j] == 0){
                i -= 1;
                mark[i][j] = 1;
                ans.push_back(matrix[i][j]);
            }
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值