1、番外说明
大家好,我是小P,本系列是本人对Python模块Numpy的一些学习记录,总结于此一方面方便其它初学者学习,另一方面害怕自己遗忘,希望大家喜欢。此外,对“目标检测/模型压缩/语义分割”感兴趣的小伙伴,欢迎加入QQ群 813221712 讨论交流,进群请看群公告!(可以点击如下连接直接加入!)
点击链接加入群聊【Object Detection】:https://jq.qq.com/?_wv=1027&k=5kXCXF8
2、正题
参考链接:
http://www.runoob.com/numpy/numpy-array-attributes.html
https://cloud.tencent.com/developer/article/1106669
NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推。
在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。
很多时候可以声明 axis。axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。
NumPy 的数组中比较重要 ndarray 对象属性有:
ndarray.ndim
ndarray.ndim 用于返回数组的维数,等于秩。
实例
import numpy as np
a = np.arange(24)
print (a.ndim) # a 现只有一个维度
# 现在调整其大小
b = a.reshape(2,4,3) # b 现在拥有三个维度
print (b.ndim)
输出结果为:
1
3
reshape函数调整数组得维度,当a变为3个维度后可以通过3个索引访问a的元素,如a[1][1][1]
ndarray.shape
ndarray.shape 表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。比如,一个二维数组,其维度表示"行数"和"列数"。
ndarray.shape 也可以用于调整数组大小,功能同reshape
实例:看一个数组的维度
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
print (a.shape)
输出结果为:
(2, 3)
其中2表示数组的行数为2,3表示数组的列数为3
实例:调整数组大小
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
a.shape = (3,2)
print (a)
输出结果为:
[[1 2]
[3 4]
[5 6]]
注意:在进行数组大小调整前后的元素个数一定要一致,即调整前后的size相等,否则报错,如:
y = np.zeros((2, 3, 4))
y.shape=(2,8)
Traceback (most recent call last):
File "<ipython-input-82-96426d95e433>", line 1, in <module>
y.shape=(2,8)
ValueError: cannot reshape array of size 24 into shape (2,8)
NumPy 也提供了 reshape 函数来调整数组大小。
实例:使用reshape调整数组的维度大小
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
b = a.reshape(3,2)
print (b)
输出结果为:
[[1, 2]
[3, 4]
[5, 6]]
ndarray.itemsize
ndarray.itemsize 以字节的形式返回数组中每一个元素的大小。
例如,一个元素类型为 float64 的数组 itemsize 属性值为 8(float64 占用 64 个 bits,每个字节长度为 8,所以 64/8,占用 8 个字节),又如,一个元素类型为 complex32 的数组 itemsize 属性为 4(32/8)。
实例:查看数组中每一个元素的大小
import numpy as np
# 数组的 dtype 为 int8(一个字节)
x = np.array([1,2,3,4,5], dtype = np.int8)
print (x.itemsize)
# 数组的 dtype 现在为 float64(八个字节)
y = np.array([1,2,3,4,5], dtype = np.float64)
print (y.itemsize)
输出结果为:
1
8
ndarray.flags
ndarray.flags 返回 ndarray 对象的内存信息,包含以下属性:
实例:查看数组的内存信息
import numpy as np
x = np.array([1,2,3,4,5])
print (x.flags)
输出结果为:
C_CONTIGUOUS : True
F_CONTIGUOUS : True
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False
ndarray.size
获取数组元素的总个数
实例:获取数组元素的总个数
B=np.ones((2,2,3),dtype=np.float32)
print(B.size)
输出结果为:
12
ndarray.real
实例:得到adrray元素的实部
B=np.ones((2,2,3),dtype=np.complex)
print(B.real)
输出结果为:
[[[1. 1. 1.]
[1. 1. 1.]]
[[1. 1. 1.]
[1. 1. 1.]]]
同样,可以获得虚部:
print(B.imag)
输出结果为:
[[[0. 0. 0.]
[0. 0. 0.]]
[[0. 0. 0.]
[0. 0. 0.]]]