朴素贝叶斯网络举例

本文通过一个具体的例子详细介绍了如何使用朴素贝叶斯网络进行分类预测。利用训练数据,建立了网络结构和参数,并对给定的待分类样本进行预测,最终得出预测结果。同时,总结了朴素贝叶斯网络的优点和缺点,指出其分类精度可能因属性独立假设而受限。
摘要由CSDN通过智能技术生成

4. 举例

给定训练样本集,样本属性age, income, student, credit_rating描述,类标号属性buy-computer,具有两个不同值({yes, no}) C1对应于类buy-comput=yes,C2no,待分类样本为(age=”<=30”, income=”medium”, student=”yes”, credit-rating = “fair”),求利用朴素贝叶斯网络分类器预测待分类样本的类标号。

1)首先建立朴素贝叶斯网络的结构

C为总的条件概率,xi为第i类属性的条件概率。

2)建立朴素贝叶斯网络结点的参数

共有14条记录,其中买电脑的9人,没买的5人,则结点C的条件概率表为:

P(buy-computer)=”yes”

9/14

P(buy-computer)=”no”

5/14

结点X0表示年龄的条件概率表:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值