4. 举例
给定训练样本集,样本属性age, income, student, credit_rating描述,类标号属性buy-computer,具有两个不同值({yes, no})。 设C1对应于类buy-comput=yes,C2为no,待分类样本为(age=”<=30”, income=”medium”, student=”yes”, credit-rating = “fair”),求利用朴素贝叶斯网络分类器预测待分类样本的类标号。
(1)首先建立朴素贝叶斯网络的结构
C为总的条件概率,xi为第i类属性的条件概率。
(2)建立朴素贝叶斯网络结点的参数
共有14条记录,其中买电脑的9人,没买的5人,则结点C的条件概率表为:
P(buy-computer)=”yes” |
9/14 |
P(buy-computer)=”no” |
5/14 |
结点X0表示年龄的条件概率表:
|