基础集合论 第五章 5 良序化原理

定理 良序化原理

每个集合都可以良序化。

证明

A= A = ∅ (,) ( ∅ , ∅ ) 就是一个良序集。接下来只考虑 A A ≠ ∅ 的情况。
根据选择公理,设 φ φ 是集合 A A 的一个选择函数。
对于集合 A 的任意一个子集 D D D 上的一个偏序 D ≤ D ,当且仅当:
1. (D,D) ( D , ≤ D ) 是良序集。
2. aD(φ(As(a,D))=a) ∀ a ∈ D ( φ ( A − s ( a , ≤ D ) ) = a )
称序集 (D,D) ( D , ≤ D ) 是一个 Γ Γ 集。
M={ DA|D M = { D ⊆ A | ∃ D 上的一个偏序 D, ≤ D , 使得序集 (D,D) ( D , ≤ D ) 是一个 Γ Γ }, } ,
U=(M), U = ∪ ( M ) ,
R={ (x,y)|Γ R = { ( x , y ) | ∃ Γ (D,D) ( D , ≤ D ) 使得 (xDy)} ( x ≤ D y ) }
则:

结论 1

对于任意一个 DM, D ∈ M , 有唯一的 D ≤ D 使得 (D,D) ( D , ≤ D ) Γ Γ 集。
即: DM, ∀ D ∈ M , 对于 D D 上的任意两个偏序 D 1 , D 2 , (D,D1),(D,D2) ( D , ≤ D 1 ) , ( D , ≤ D 2 ) 都是 Γ Γ 集,则 D1=D2 ≤ D 1 = ≤ D 2

证明:

只要证: aD(s(a,D1)=s(a,D2)) ∀ a ∈ D ( s ( a , ≤ D 1 ) = s ( a , ≤ D 2 ) )
使用超限归纳原理证明:
aD, ∀ a ∈ D , 假设 xs(a,D1)(s(x,D1)=s(x,D2)) ∀ x ∈ s ( a , ≤ D 1 ) ( s ( x , ≤ D 1 ) = s ( x , ≤ D 2 ) )
xs(a,D1),yD(yD2xyD1xys(a,D1)) ∀ x ∈ s ( a , ≤ D 1 ) , ∀ y ∈ D ( y ≤ D 2 x ⇒ y ≤ D 1 x ⇒ y ∈ s ( a , ≤ D 1 ) )
因此 s(a,D1) s ( a , ≤ D 1 ) 是序集 (D,D2) ( D , ≤ D 2 ) 的一个截段。
因为 as(a,D1) a ∉ s ( a , ≤ D 1 ) ,因此 s(a,D1) s ( a , ≤ D 1 ) 是序集 (D,D2) ( D , ≤ D 2 ) 的一个真截段。
因为 (D,D2) ( D , ≤ D 2 ) 是良序集,因此存在 bD, b ∈ D , 使得 s(a,D1)=s(b,D2), s ( a , ≤ D 1 ) = s ( b , ≤ D 2 ) ,
于是 a=φ(As(a,D1))=φ(As(b,D2))=b, a = φ ( A − s ( a , ≤ D 1 ) ) = φ ( A − s ( b , ≤ D 2 ) ) = b ,
因此 s(a,D1)=s(a,D2) s ( a , ≤ D 1 ) = s ( a , ≤ D 2 )

结论 2

(D,D),(E,E) ( D , ≤ D ) , ( E , ≤ E ) 都是 Γ Γ 集,则 D D ( E , E ) 的一个截段且 DE, ≤ D ⊆ ≤ E , E E ( D , D ) 的一个截段且

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值