可逆线性变换

高等代数 专栏收录该内容
42 篇文章 6 订阅

线性变换的逆变换

对于线性空间 V V 上的任意一个线性变换 f, 若存在 V V 上的一个变换 g,
使得 fg=gf=I, f ∘ g = g ∘ f = I , 则称 g g f 的逆变换,记为 f1 f − 1

逆变换的唯一性

对于线性空间 V V 上的任意一个线性变换 g, 若存在线性空间 V V 上的线性变换 g,g 使得 fg=gf=I, f ∘ g = g ∘ f = I , fg=gf=I, f ∘ g ′ = g ′ ∘ f = I , g=g g = g ′

证明

g=gIn=g(fg)=(gf)g=Img=g g = g ∘ I n = g ∘ ( f ∘ g ′ ) = ( g ∘ f ) ∘ g ′ = I m ∘ g ′ = g ′

可逆的必要条件

  1. f f 可逆,则 f 是满射,即 f f 的值域 ranf=V
    证明
    对于任意一个向量 αV, α ∈ V , 存在向量 β=f1(α)V, β = f − 1 ( α ) ∈ V , 使得
    f(β)=f(f1(α))=(ff1)(α)=α f ( β ) = f ( f − 1 ( α ) ) = ( f ∘ f − 1 ) ( α ) = α
  2. f f 可逆,则 f 是单射。
    证明
    对于任意两个向量 α,βV, α , β ∈ V ,
    f(α)=f(β)f1(f(α))=f1(f(β)) f ( α ) = f ( β ) ⇒ f − 1 ( f ( α ) ) = f − 1 ( f ( β ) )
    (f1f)(α)=(f1f)(β)α=β ⇒ ( f − 1 ∘ f ) ( α ) = ( f − 1 ∘ f ) ( β ) ⇒ α = β
  3. 由1,2得,若 f f 可逆,则 f一一映射
  4. 由3得,可逆的线性变换是同构映射

可逆的充分条件

若线性变换 f f 一一映射,则 f 可逆。
定义线性空间 V V 上的关系 g={(α,β):α,βVf(β)=α}, 则:
1. g g 是一个函数。
证明:
α,βV,(α,β)g(α,β)g
f(β)=αf(β)=αβ=β ⇒ f ( β ) = α ∧ f ( β ′ ) = α ⇒ β = β ′
2. g g 的定义域是 V
证明:
f f 是一一映射,因此 αV,βV, 使得 α=f(β), α = f ( β ) ,
(α,β)g, ( α , β ) ∈ g , 因此 g g 的定义域是 V
3. fg=gf=I f ∘ g = g ∘ f = I
证明:
αV, ∀ α ∈ V , β=g(α), β = g ( α ) , f(β)=α, f ( β ) = α , 因此 (fg)(α)=f(g(α))=f(β)=α ( f ∘ g ) ( α ) = f ( g ( α ) ) = f ( β ) = α
βV, ∀ β ∈ V , α=f(β), α = f ( β ) , g(α)=β, g ( α ) = β , 因此 (gf)(β)=g(f(β))=g(α)=β ( g ∘ f ) ( β ) = g ( f ( β ) ) = g ( α ) = β

可逆的充要条件

f f 可逆的充要条件是: f 是一一映射。

性质

性质1

若线性变换可逆,则线性变换的逆变换也是线性变换。
即:对于线性空间 V V 上的任意一个线性变换 f, f f 可逆,
则它的逆变换 f1 也是线性变换。

证明

f1 f − 1 f f 的逆映射,因此 ff1=f1f=I 。则
对于任意两个向量 α,βV, α , β ∈ V , 以及任意的 kP k ∈ P
f1(α+β)=f1((ff1)(α)+(ff1)(β)) f − 1 ( α + β ) = f − 1 ( ( f ∘ f − 1 ) ( α ) + ( f ∘ f − 1 ) ( β ) )
=f1(f(f1(α))+f(f1(β))) = f − 1 ( f ( f − 1 ( α ) ) + f ( f − 1 ( β ) ) )
=f1(f(f1(α)+f1(β))) = f − 1 ( f ( f − 1 ( α ) + f − 1 ( β ) ) )
=(f1f)(f1(α)+f1(β)) = ( f − 1 ∘ f ) ( f − 1 ( α ) + f − 1 ( β ) )
=f1(α)+f1(β) = f − 1 ( α ) + f − 1 ( β )

f1(kα)=f1(k((ff1)(α))) f − 1 ( k α ) = f − 1 ( k ( ( f ∘ f − 1 ) ( α ) ) )
=f1(kf(f1(α))) = f − 1 ( k f ( f − 1 ( α ) ) )
=f1(f(kf1(α))) = f − 1 ( f ( k f − 1 ( α ) ) )
=(f1f)(kf1(α)) = ( f − 1 ∘ f ) ( k f − 1 ( α ) )
=kf1(α) = k f − 1 ( α )
因此 f1 f − 1 也是线性变换。

性质2

f f 可逆,则它的逆变换 f1 也可逆,且 (f1)1=f ( f − 1 ) − 1 = f

证明

由定义可得 ff1=f1f=I f ∘ f − 1 = f − 1 ∘ f = I

  • 3
    点赞
  • 0
    评论
  • 11
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值