矩阵的秩的性质

定理 1

对于任意一个矩阵 Am×n, A m × n , 对于 A A 的任意一个 s t t 列组成的矩阵 Bs×t,r(B)r(A)+s+tmn

证明

  1. 首先证明: 对于任意一个矩阵 Am×n, A m × n , 对于 A A 的任意一个 m n1 n − 1 列组成的矩阵 Bm×(n1),r(B)r(A)1 B m × ( n − 1 ) , r ( B ) ≥ r ( A ) − 1
    A A 中的一个行列式不为零的 r(A) 阶子式,则该子式最多有一列不在 B B 中,按照这一列展开,则该子式是 B 中的 r(A)1 r ( A ) − 1 阶子式的线性组合,因此 B B 中至少有一个 r(A)1 阶子式不为 0, 0 , 因此 r(B)r(A)1 r ( B ) ≥ r ( A ) − 1
  2. 同理可得,对于任意一个矩阵 Am×n, A m × n , 对于 A A 的任意一个 m1 n n 列组成的矩阵 B(m1)×n,r(B)r(A)1
  3. B B 可看成是从 A 中逐个移除 ms m − s nt n − t 列而得到的矩阵,因此 r(B)r(A)(ms)(nt)=r(A)+s+tmn r ( B ) ≥ r ( A ) − ( m − s ) − ( n − t ) = r ( A ) + s + t − m − n

定理 2

Am×p,Bp×n,r(A)+r(B)pr(AB) ∀ A m × p , B p × n , r ( A ) + r ( B ) − p ≤ r ( A B )

证明


A=P1(ErA×rA000)Q1 A = P 1 ( E r A × r A 0 0 0 ) Q 1
B=P2(ErB×rB000)Q2 B = P 2 ( E r B × r B 0 0 0 ) Q 2
AB=P1(ErA×rA000)Q1P2(ErB×rB000)Q2 A B = P 1 ( E r A × r A 0 0 0 ) Q 1 P 2 ( E r B × r B 0 0 0 ) Q 2
=P1QQ2 = P 1 Q Q 2
其中 P=Q1P2,Q=(ErA×rA000)P(ErB×rB000) P = Q 1 P 2 , Q = ( E r A × r A 0 0 0 ) P ( E r B × r B 0 0 0 )
P1,Q1,P2,Q2 P 1 , Q 1 , P 2 , Q 2 都可逆。
P=(P11P21P12P22), P = ( P 11 P 12 P 21 P 22 ) , Q=(P11000)p×p, Q = ( P 11 0 0 0 ) p × p ,
由定理1, r(AB)=r(P1QQ2)=r(Q)=r(P11)r(P)+r(A)+r(B)pp=r(A)+r(B)p r ( A B ) = r ( P 1 Q Q 2 ) = r ( Q ) = r ( P 11 ) ≥ r ( P ) + r ( A ) + r ( B ) − p − p = r ( A ) + r ( B ) − p

  • 18
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值