线性变换的值域与核

本文详细探讨了线性变换的值域与核的概念。定义了线性变换的值域domf为其所有可能输出的集合,而核Kerf为所有使变换结果为零向量的输入元素集合。进一步,文章证明了domf和Kerf都是线性空间的子空间,并介绍了这两个概念的重要性质。定理1表明在n维线性空间中,线性变换的值域由其基的变换生成,且其维度等于变换矩阵的秩。定理2揭示了核与值域的维度之和等于空间的维数,最后通过推论得出线性变换是单射或满射的充要条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性变换的值域

对于线性空间 V V 上的任意一个线性变换 f , 定义:
domf={ f(α):αV} d o m f = { f ( α ) : α ∈ V }
f f 的值域。

线性变换的核

对于线性空间 V 上的任意一个线性变换 f, f , 定义:
Kerf={ αV:f(α)=0⃗ } K e r f = { α ∈ V : f ( α ) = 0 → }
f f 的核。

性质

d o m f Kerf K e r f 都是 V V 的子空间。

证明

α , β d o m f , α , β V , 使得 f(α)=α,f(β)=β, f ( α ) = α ′ , f ( β ) = β ′ ,
因此 α+β=f(α)+f(β)=f(α+β)domf α ′ + β ′ = f ( α ) + f ( β ) = f ( α + β ) ∈ d o m f
αdomf,αV, ∀ α ′ ∈ d o m f , ∃ α ∈ V , 使得 f(α)=α, f ( α ) = α ′ ,
因此 kP,kα=kf(α)=f(kα)domf ∀ k ∈ P , k α = k f ( α ) = f ( k α ) ∈ d o m f
α,βKerf,

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值