多面集的方向的性质
引理
设向量
X,β,d⃗ ∈V,
X
,
β
,
d
→
∈
V
,
1.
X≥β,
X
≥
β
,
则
∀k∈R,k≥0,X+kd⃗ ≥β⇔d⃗ ≥0⃗
∀
k
∈
R
,
k
≥
0
,
X
+
k
d
→
≥
β
⇔
d
→
≥
0
→
2.
X≤β,
X
≤
β
,
则
∀k∈R,k≥0,X+kd⃗ ≤β⇔d⃗ ≤0⃗
∀
k
∈
R
,
k
≥
0
,
X
+
k
d
→
≤
β
⇔
d
→
≤
0
→
3.
X=β,
X
=
β
,
则
∀k∈R,k≥0,X+kd⃗ =β⇔d⃗ =0⃗
∀
k
∈
R
,
k
≥
0
,
X
+
k
d
→
=
β
⇔
d
→
=
0
→
证明
-
1.1 ⇐: ⇐:
d⃗ ≥0⃗ , d → ≥ 0 → , 因此 ∀k∈R,k≥0,X+kd⃗ ≥X≥β ∀ k ∈ R , k ≥ 0 , X + k d → ≥ X ≥ β
1.2 ⇒: ⇒:
用反证法证明 d⃗ ≥0⃗ d → ≥ 0 → :
若 d⃗ ≱0⃗ , d → ≱ 0 → , 不妨设 d⃗ =⎛⎝⎜⎜d1⋮dn⎞⎠⎟⎟, d → = ( d 1 ⋮ d n ) , 则 ∃i∈N,1≤i≤n, ∃ i ∈ N , 1 ≤ i ≤ n , 使得 di<0, d i < 0 , 于是
∃k=−|xi|+|βi|+1di≥0, ∃ k = − | x i | + | β i | + 1 d i ≥ 0 , 使得 xi+kdi=xi−(|xi|+|βi|+1)≤−|βi|−1<−|βi|≤βi x i + k d i = x i − ( | x i | + | β i | + 1 ) ≤ − | β i | − 1 < − | β i | ≤ β i
于是 X+kd⃗ ≱β⃗ , X + k d → ≱ β → , 与 X+kd⃗ ≥β⃗ X + k d → ≥ β → 矛盾。
2.
2.1 ⇐: ⇐:
d⃗ ≤0⃗ , d → ≤ 0 → , 因此 ∀k∈R,k≤0,X+kd⃗ ≤X≤β ∀ k ∈ R , k ≤ 0 , X + k d → ≤ X ≤ β
2.2 ⇒: ⇒:
用反证法证明 d⃗ ≤0⃗ d → ≤ 0 → :
若 d⃗ ≰0⃗ , d → ≰ 0 → , 不妨设 d⃗ =⎛⎝⎜⎜d1⋮dn⎞⎠⎟⎟, d → = ( d 1 ⋮ d n ) , 则 ∃i∈N,1≤i≤n, ∃ i ∈ N , 1 ≤ i ≤ n , 使得 di>0, d i > 0 , 于是
∃k=|xi|+|βi|+1di≥0, ∃ k = | x i | + | β i | + 1 d i ≥ 0 , 使得 xi+kdi=xi+(|xi|+|βi|+1)≥|βi|+1>|βi|≥βi x i + k d i = x i + ( | x i | + | β i | + 1 ) ≥ | β i | + 1 > | β i | ≥ β i
于是 X+kd⃗ ≰β⃗ , X + k d → ≰ β → , 与 X+kd⃗ ≤β⃗ X + k d → ≤ β → 矛盾。
3.
X+kd⃗ =β⇔X+kd⃗ ≤β∧X+kd⃗ ≥β X + k d → = β ⇔ X + k d → ≤ β ∧ X + k d → ≥ β
由 1,2 可得
∀k∈R,k≥0,β+kd⃗ =β ∀ k ∈ R , k ≥ 0 , β + k d → = β
⇔∀k∈R,k≥0,X+kd⃗ ≤β∧∀k∈R,k≥0,X+kd⃗ ≥β⇔d⃗ ≤0⃗ ∧d⃗ ≥0⃗ ⇔d⃗ =0⃗ ⇔ ∀ k ∈ R , k ≥ 0 , X + k d → ≤ β ∧ ∀ k ∈ R , k ≥ 0 , X + k d → ≥ β ⇔ d → ≤ 0 → ∧ d → ≥ 0 → ⇔ d → = 0 →
命题
设多面集
S1={X∈Rn∣AX≥β,X≥0⃗ },
S
1
=
{
X
∈
R
n
∣
A
X
≥
β
,
X
≥
0
→
}
,
S2={X∈Rn∣AX≤β,X≥0⃗ },
S
2
=
{
X
∈
R
n
∣
A
X
≤
β
,
X
≥
0
→
}
,
S3={X∈Rn∣AX=β,X≥0⃗ },
S
3
=
{
X
∈
R
n
∣
A
X
=
β
,
X
≥
0
→
}
,
为非空集合,其中
A∈Rm×n,β∈Rm
A
∈
R
m
×
n
,
β
∈
R
m
,则对于任意一个向量
d⃗ ∈Rn,d⃗ ≠0⃗ ,
d
→
∈
R
n
,
d
→
≠
0
→
,
:
1.
d⃗
d
→
为
S1
S
1
的一个方向
⇔Ad⃗ ≥0⃗
⇔
A
d
→
≥
0
→
且
d⃗ ≥0⃗
d
→
≥
0
→
2.
d⃗
d
→
为
S2
S
2
的一个方向
⇔Ad⃗ ≤0⃗
⇔
A
d
→
≤
0
→
且
d⃗ ≥0⃗
d
→
≥
0
→
3.
d⃗
d
→
为
S3
S
3
的一个方向
⇔Ad⃗ =0⃗
⇔
A
d
→
=
0
→
且
d⃗ ≥0⃗
d
→
≥
0
→
证明
∀X∈S1,AX≥β,X≥0⃗ ,
∀
X
∈
S
1
,
A
X
≥
β
,
X
≥
0
→
,
∀X∈S2,AX≤β,X≥0⃗ ,
∀
X
∈
S
2
,
A
X
≤
β
,
X
≥
0
→
,
∀X∈S3,AX=β,X≥0⃗ ,
∀
X
∈
S
3
,
A
X
=
β
,
X
≥
0
→
,
∀k∈R,k≥0,A(X+kd⃗ )=AX+kAd⃗ ,
∀
k
∈
R
,
k
≥
0
,
A
(
X
+
k
d
→
)
=
A
X
+
k
A
d
→
,
于是由引理,对于任意一个向量
d⃗ ∈Rn,d⃗ ≠0⃗ ,
d
→
∈
R
n
,
d
→
≠
0
→
,
1.
d⃗
d
→
为
S1
S
1
的一个方向
⇔∀X∈S1,∀k∈R,k≥0,X+kd⃗ ∈S1
⇔
∀
X
∈
S
1
,
∀
k
∈
R
,
k
≥
0
,
X
+
k
d
→
∈
S
1
⇔∀X∈S1,∀k∈R,k≥0,AX+kAd⃗ ≥β
⇔
∀
X
∈
S
1
,
∀
k
∈
R
,
k
≥
0
,
A
X
+
k
A
d
→
≥
β
且
X+kd⃗ ≥0⃗
X
+
k
d
→
≥
0
→
⇔∀X∈S1,∀k∈R,k≥0,Ad⃗ ≥0⃗
⇔
∀
X
∈
S
1
,
∀
k
∈
R
,
k
≥
0
,
A
d
→
≥
0
→
且
d⃗ ≥0⃗
d
→
≥
0
→
2.
d⃗
d
→
为
S2
S
2
的一个方向
⇔∀X∈S2,∀k∈R,k≥0,X+kd⃗ ∈S2
⇔
∀
X
∈
S
2
,
∀
k
∈
R
,
k
≥
0
,
X
+
k
d
→
∈
S
2
⇔∀X∈S2,∀k∈R,k≥0,X+kd⃗ ≥0⃗
⇔
∀
X
∈
S
2
,
∀
k
∈
R
,
k
≥
0
,
X
+
k
d
→
≥
0
→
且
AX+kAd⃗ ≤β
A
X
+
k
A
d
→
≤
β
且
X+kd⃗ ≥0⃗
X
+
k
d
→
≥
0
→
⇔∀X∈S2,∀k∈R,k≥0,Ad⃗ ≤0⃗
⇔
∀
X
∈
S
2
,
∀
k
∈
R
,
k
≥
0
,
A
d
→
≤
0
→
且
d⃗ ≥0⃗
d
→
≥
0
→
3.
d⃗
d
→
为
S3
S
3
的一个方向
⇔∀X∈S3,∀k∈R,k≥0,X+kd⃗ ∈S3
⇔
∀
X
∈
S
3
,
∀
k
∈
R
,
k
≥
0
,
X
+
k
d
→
∈
S
3
⇔∀X∈S3,∀k∈R,k≥0,β+kAd⃗ =β
⇔
∀
X
∈
S
3
,
∀
k
∈
R
,
k
≥
0
,
β
+
k
A
d
→
=
β
且
X+kd⃗ ≥0⃗
X
+
k
d
→
≥
0
→
⇔∀X∈S3,∀k∈R,k≥0,Ad⃗ =0⃗
⇔
∀
X
∈
S
3
,
∀
k
∈
R
,
k
≥
0
,
A
d
→
=
0
→
且
d⃗ ≥0⃗
d
→
≥
0
→