多面集的方向的性质

本文探讨了多面集的方向性质,包括引理和命题的详细证明。引理指出,向量X与β的关系(大于,小于或等于)与向量d的关系(非负,非正或为零)之间存在直接联系。命题则阐述了多面集S1, S2, S3的方向条件,涉及矩阵A和向量d的关系。" 133756624,13925776,内网渗透技术解析与面试要点,"['内网安全', '渗透测试', '网络安全', '认证机制', 'Java安全']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多面集的方向的性质

引理

设向量 X,β,d⃗ V, X , β , d → ∈ V ,
1. Xβ, X ≥ β , kR,k0,X+kd⃗ βd⃗ 0⃗  ∀ k ∈ R , k ≥ 0 , X + k d → ≥ β ⇔ d → ≥ 0 →
2. Xβ, X ≤ β , kR,k0,X+kd⃗ βd⃗ 0⃗  ∀ k ∈ R , k ≥ 0 , X + k d → ≤ β ⇔ d → ≤ 0 →
3. X=β, X = β , kR,k0,X+kd⃗ =βd⃗ =0⃗  ∀ k ∈ R , k ≥ 0 , X + k d → = β ⇔ d → = 0 →

证明


  1. 1.1 : ⇐:
    d⃗ 0⃗ , d → ≥ 0 → , 因此 kR,k0,X+kd⃗ Xβ ∀ k ∈ R , k ≥ 0 , X + k d → ≥ X ≥ β
    1.2 : ⇒:
    用反证法证明 d⃗ 0⃗  d → ≥ 0 →
    d⃗ 0⃗ , d → ≱ 0 → , 不妨设 d⃗ =d1dn, d → = ( d 1 ⋮ d n ) , iN,1in, ∃ i ∈ N , 1 ≤ i ≤ n , 使得 di<0, d i < 0 , 于是
    k=|xi|+|βi|+1di0, ∃ k = − | x i | + | β i | + 1 d i ≥ 0 , 使得 xi+kdi=xi(|xi|+|βi|+1)|βi|1<|βi|βi x i + k d i = x i − ( | x i | + | β i | + 1 ) ≤ − | β i | − 1 < − | β i | ≤ β i
    于是 X+kd⃗ β⃗ , X + k d → ≱ β → , X+kd⃗ β⃗  X + k d → ≥ β → 矛盾。
    2.
    2.1 : ⇐:
    d⃗ 0⃗ , d → ≤ 0 → , 因此 kR,k0,X+kd⃗ Xβ ∀ k ∈ R , k ≤ 0 , X + k d → ≤ X ≤ β
    2.2 : ⇒:
    用反证法证明 d⃗ 0⃗  d → ≤ 0 →
    d⃗ 0⃗ , d → ≰ 0 → , 不妨设 d⃗ =d1dn, d → = ( d 1 ⋮ d n ) , iN,1in, ∃ i ∈ N , 1 ≤ i ≤ n , 使得 di>0, d i > 0 , 于是
    k=|xi|+|βi|+1di0, ∃ k = | x i | + | β i | + 1 d i ≥ 0 , 使得 xi+kdi=xi+(|xi|+|βi|+1)|βi|+1>|βi|βi x i + k d i = x i + ( | x i | + | β i | + 1 ) ≥ | β i | + 1 > | β i | ≥ β i
    于是 X+kd⃗ β⃗ , X + k d → ≰ β → , X+kd⃗ β⃗  X + k d → ≤ β → 矛盾。
    3.
    X+kd⃗ =βX+kd⃗ βX+kd⃗ β X + k d → = β ⇔ X + k d → ≤ β ∧ X + k d → ≥ β
    由 1,2 可得
    kR,k0,β+kd⃗ =β ∀ k ∈ R , k ≥ 0 , β + k d → = β
    kR,k0,X+kd⃗ βkR,k0,X+kd⃗ βd⃗ 0⃗ d⃗ 0⃗ d⃗ =0⃗  ⇔ ∀ k ∈ R , k ≥ 0 , X + k d → ≤ β ∧ ∀ k ∈ R , k ≥ 0 , X + k d → ≥ β ⇔ d → ≤ 0 → ∧ d → ≥ 0 → ⇔ d → = 0 →

命题

设多面集
S1={XRnAXβ,X0⃗ }, S 1 = { X ∈ R n ∣ A X ≥ β , X ≥ 0 → } ,
S2={XRnAXβ,X0⃗ }, S 2 = { X ∈ R n ∣ A X ≤ β , X ≥ 0 → } ,
S3={XRnAX=β,X0⃗ }, S 3 = { X ∈ R n ∣ A X = β , X ≥ 0 → } ,
非空集合,其中 ARm×n,βRm A ∈ R m × n , β ∈ R m ,则对于任意一个向量 d⃗ Rn,d⃗ 0⃗ , d → ∈ R n , d → ≠ 0 → ,
1. d⃗  d → S1 S 1 的一个方向 Ad⃗ 0⃗  ⇔ A d → ≥ 0 → d⃗ 0⃗  d → ≥ 0 →
2. d⃗  d → S2 S 2 的一个方向 Ad⃗ 0⃗  ⇔ A d → ≤ 0 → d⃗ 0⃗  d → ≥ 0 →
3. d⃗  d → S3 S 3 的一个方向 Ad⃗ =0⃗  ⇔ A d → = 0 → d⃗ 0⃗  d → ≥ 0 →

证明

XS1,AXβ,X0⃗ , ∀ X ∈ S 1 , A X ≥ β , X ≥ 0 → ,
XS2,AXβ,X0⃗ , ∀ X ∈ S 2 , A X ≤ β , X ≥ 0 → ,
XS3,AX=β,X0⃗ , ∀ X ∈ S 3 , A X = β , X ≥ 0 → ,
kR,k0,A(X+kd⃗ )=AX+kAd⃗ , ∀ k ∈ R , k ≥ 0 , A ( X + k d → ) = A X + k A d → ,
于是由引理,对于任意一个向量 d⃗ Rn,d⃗ 0⃗ , d → ∈ R n , d → ≠ 0 → ,
1. d⃗  d → S1 S 1 的一个方向
XS1,kR,k0,X+kd⃗ S1 ⇔ ∀ X ∈ S 1 , ∀ k ∈ R , k ≥ 0 , X + k d → ∈ S 1
XS1,kR,k0,AX+kAd⃗ β ⇔ ∀ X ∈ S 1 , ∀ k ∈ R , k ≥ 0 , A X + k A d → ≥ β X+kd⃗ 0⃗  X + k d → ≥ 0 →
XS1,kR,k0,Ad⃗ 0⃗  ⇔ ∀ X ∈ S 1 , ∀ k ∈ R , k ≥ 0 , A d → ≥ 0 → d⃗ 0⃗  d → ≥ 0 →
2. d⃗  d → S2 S 2 的一个方向
XS2,kR,k0,X+kd⃗ S2 ⇔ ∀ X ∈ S 2 , ∀ k ∈ R , k ≥ 0 , X + k d → ∈ S 2
XS2,kR,k0,X+kd⃗ 0⃗  ⇔ ∀ X ∈ S 2 , ∀ k ∈ R , k ≥ 0 , X + k d → ≥ 0 → AX+kAd⃗ β A X + k A d → ≤ β X+kd⃗ 0⃗  X + k d → ≥ 0 →
XS2,kR,k0,Ad⃗ 0⃗  ⇔ ∀ X ∈ S 2 , ∀ k ∈ R , k ≥ 0 , A d → ≤ 0 → d⃗ 0⃗  d → ≥ 0 →
3. d⃗  d → S3 S 3 的一个方向
XS3,kR,k0,X+kd⃗ S3 ⇔ ∀ X ∈ S 3 , ∀ k ∈ R , k ≥ 0 , X + k d → ∈ S 3
XS3,kR,k0,β+kAd⃗ =β ⇔ ∀ X ∈ S 3 , ∀ k ∈ R , k ≥ 0 , β + k A d → = β X+kd⃗ 0⃗  X + k d → ≥ 0 →
XS3,kR,k0,Ad⃗ =0⃗  ⇔ ∀ X ∈ S 3 , ∀ k ∈ R , k ≥ 0 , A d → = 0 → d⃗ 0⃗  d → ≥ 0 →

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值