Object Detection

Concepts

Name Description y
Object Classification At most one object y=(c1c2c3)
Object Localization At most one object y=(pcbxbybwbhc1c2c3)
Landmark Detection At most one object y=(pcl1xl1yl64xl64y)
Object Detection Multiple objects

Sliding Windows Object Detection Algorithm

  1. Input: closely cropped images by sliding window
  2. Crop images with larger window

Disadvantage

Complex computation

Convolutional Implement of Sliding Windows

Turn Full Connection (FC) into convolutional layer

Bounding Box Detection

Yolo (You only look once) Algorithm
IoU (Intersection over Union)

Non-max Supression (NMS)

Discard all boxes with low pc
While remaining boxes exists:
1. Pick the box with the largest pc , output that as a prediction
2. Discard remaining boxes with IoU 0.5 with the box output in previous step

Region Proposal

R-RNN: Segmentation Algorithm
Fast R-RNN
Faster R-RNN

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/phoenix198425/article/details/79951924
个人分类: 机器学习
上一篇Convolutional Neural Networks
下一篇Face Recognition
想对作者说点什么? 我来说一句

object detection

2015年10月14日 7.54MB 下载

Object detection

Review and summrize

bea_tree bea_tree

2016-06-22 10:28:42

阅读数:671

没有更多推荐了,返回首页

关闭
关闭