设
f(x)
f
(
x
)
在
ℝ
R
有二阶连续导数,且
f′(x)≠0
f
′
(
x
)
≠
0
则
∀x0,x∈ℝ,
∀
x
0
,
x
∈
R
,
若
f(x0)=0
f
(
x
0
)
=
0
则
f(x0)=f(x)+f′(x)Δx+12f″(ε)Δx2=0
f
(
x
0
)
=
f
(
x
)
+
f
′
(
x
)
Δ
x
+
1
2
f
″
(
ε
)
Δ
x
2
=
0
⇒
⇒
x0−x=Δx=−1f′(x)[f(x)+12f″(ε)Δx2]
x
0
−
x
=
Δ
x
=
−
1
f
′
(
x
)
[
f
(
x
)
+
1
2
f
″
(
ε
)
Δ
x
2
]
=−f(x)f′(x)−12f″(ε)f′(x)Δx2
=
−
f
(
x
)
f
′
(
x
)
−
1
2
f
″
(
ε
)
f
′
(
x
)
Δ
x
2
⇒
⇒
x0=x−f(x)f′(x)−12f″(ε)f′(x)Δx2
x
0
=
x
−
f
(
x
)
f
′
(
x
)
−
1
2
f
″
(
ε
)
f
′
(
x
)
Δ
x
2
由于
limx→x0[−12f″(ε)f′(x)Δx2]=0
lim
x
→
x
0
[
−
1
2
f
″
(
ε
)
f
′
(
x
)
Δ
x
2
]
=
0
因此
limx→x0[x−f(x)f′(x)]=x0
lim
x
→
x
0
[
x
−
f
(
x
)
f
′
(
x
)
]
=
x
0
令
F(x)=x−f(x)f′(x)
F
(
x
)
=
x
−
f
(
x
)
f
′
(
x
)
,则
limx→x0F(x)=x0
lim
x
→
x
0
F
(
x
)
=
x
0
由此得到迭代公式:
xk+1=F(xk)=xk−f(xk)f′(xk)
x
k
+
1
=
F
(
x
k
)
=
x
k
−
f
(
x
k
)
f
′
(
x
k
)
牛顿迭代法
最新推荐文章于 2018-12-13 12:03:18 发布