6、数据可视化:数值与分类数据的统计处理策略

数据可视化:数值与分类数据的统计处理策略

1. 数据可视化概述

在数据可视化中,不同类型的图表能帮助我们从不同角度理解数据。例如,箱线图和直方图的结合,能让我们看到箱线图的构建与底层数据的关系,还能同时了解数据的频率和密度。下面将通过几个实际案例,详细介绍如何运用不同的图表和统计方法来分析数据。

2. 折线图:Office Essentials 案例研究

2.1 构建基本折线图

OE 公司的数据团队需要展示过去几年按月份细分的整体销售数据,以预测未来销售趋势。构建基本折线图的步骤如下:
1. 右键拖动 [Order Date] 到 Columns,选择 Month。
2. 拖动 SUM([Sales]) 到 Rows。

通过这个折线图,我们可以发现数据存在季节性,每年 9 月、11 月和 12 月会出现销售高峰,且总体销售呈上升趋势。

2.2 添加参考分布

为了更准确地传达数据信息,我们可以添加参考分布,即显示置信区间的范围。置信区间是根据随机样本计算出的可能包含所选度量真实值的范围,它与样本大小和置信水平有关。样本越大,置信区间越窄;置信水平越高,区间越宽。添加置信区间的步骤如下:
1. 从 Analytics 窗格中拖动 Average line 到视图,然后放到 Table 上。
2. 聚焦中间部分,添加置信区间并指定置信水平,将 Label 选项改为 Value。

添加置信区间后,图表能让观众更清晰地看到哪些月份的销售高于或低于平均水平。

2.3 添加标准差

我们还可以在折线图中

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值