docker搭建prometheus+blackbox-exporter+granfana实现网络监控(4)

#根据前面3章节的部署,已经完成了grafana、prometheus、blackbox-exporter的部署,第3章节的末尾已经从抓包数据验证,监控IP丢包已经实现了,现在需要将丢包率数据可视化,只需要在grafana web界面操作即可

1、在grafana 点击 首页>仪表盘>新建>新建文件夹,填写新文件夹名称 (自定义名称,如测试A)

2、然后创建仪表盘,点击 Create Dashboard,添加可视化,在选择数据源的时候选择Mixed(选择多个数据源),比较好的网络监控系统基本都是分布式多点监控(通俗理解,就是多个探测点对一个IP进行监控,可以减少探测点单点故障的问题,减少丢包误报情况)

3、选择Mixed之后就进入以下界面,A就是监控项

### 将模型接入Dify工作流指南 #### 创建自定义工作流节点以集成模型 为了使第三方模型能够顺利融入到Dify工作流中,通常需要创建特定于该模型的自定义节点。此过程涉及编写一段脚本或函数来调用外部API接口或是加载本地部署的服务实例,并将其封装成可以在Dify环境中执行的任务单元[^1]。 对于已经发布的版本v0.6.9而言,由于其特性允许将自定义工作流作为工具发布,因此一旦完成了上述提到的针对具体AI模型定制化开发之后,就可以轻松地把它们注册成为新的agent或者是workflow的一部分,在整个平台内被广泛利用而无需再次重复相同逻辑的设计与编码劳动[^2]。 #### 利用并行处理能力加速模型推理 当涉及到复杂的数据集或者多阶段预测任务时,合理运用并发机制往往能带来显著性能提升。基于这一点考虑,在最新版v0.8.0里引入了一系列有关并行计算的支持选项——无论是简单的同步操作还是更复杂的嵌套结构乃至循环体内部分支的同时启动均得到了妥善解决;这意味着如果所要对接入系统的机器学习算法适合采用分布式架构的话,则完全可以借助这些功能模块进一步优化整体效率[^3]。 ```python import requests def call_model_api(data): url = "http://example.com/api/predict" response = requests.post(url, json=data) if response.status_code == 200: result = response.json() return result['prediction'] else: raise Exception(f"Model API error: {response.text}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值