大模型工具Dify应用-工作流(Workflow)(附大模型教程)

工作流(Workflow)简介

工作流(Workflow) 是 Dify 的核心功能之一,通过将复杂任务分解为更小的步骤(节点),降低系统复杂度,减少对提示词技术和模型推理能力的依赖,从而提高 LLM 应用在复杂任务中的性能,提升系统的可解释性、稳定性和容错性。

Dify 的工作流主要分为两种类型:

  • Chatflow: 面向对话类场景,包括客户服务、语义搜索以及其他需要在构建响应时进行多步逻辑的对话式应用程序。为解决自然语言输入中用户意图识别的复杂性,Chatflow 提供了问题理解类节点,并增加了对话机器人特性的支持,如对话历史(Memory)、标注回复、Answer 节点等。
  • Workflow: 面向自动化和批处理场景,适用于高质量翻译、数据分析、内容生成、电子邮件自动化等应用程序。为解决这些场景中的复杂业务逻辑,工作流提供了丰富的逻辑节点,如代码节点、IF/ELSE 节点、模板转换、迭代节点等。此外,还提供定时和事件触发的能力,方便构建自动化流程。

常见应用案例:

  • 客户服务: 通过将 LLM 集成到客户服务系统中,自动化回答常见问题,减轻支持团队的工作负担。LLM 可以理解客户查询的上下文和意图,实时生成有帮助且准确的回答。
  • 内容生成: 无论是创建博客文章、产品描述还是营销材料,LLM 都可以生成高质量内容。只需提供一个大纲或主题,LLM 将利用其广泛的知识库制作引人入胜、信息丰富且结构良好的内容。
  • 任务自动化: 可与各种任务管理系统集成,如 Trello、Slack、Lark,以自动化项目和任务管理。通过自然语言处理,LLM 可以理解和解释用户输入,创建任务,更新状态和分配优先级,无需手动干预。
  • 数据分析和报告: 用于分析大型知识库并生成报告或摘要。通过提供相关信息给 LLM,它可以识别趋势、模式和洞察力,将原始数据转化为可操作的智能。对于希望做出数据驱动决策的企业来说,这尤其有价值。
  • 邮件自动化处理: LLM 可以用于起草电子邮件、社交媒体更新和其他形式的沟通。通过提供简要的大纲或关键要点,LLM 可以生成结构良好、连贯且与上下文相关的信息,节省大量时间,并确保回复清晰和专业。

如何开始

  • 创建工作流: 从一个空白的工作流开始构建,或者使用系统模板帮助你开始。
  • 熟悉基础操作: 包括在画布上创建节点、连接和配置节点、调试工作流、查看运行历史等。
  • 保存并发布工作流: 确保工作流配置正确后,保存并发布。
  • 运行工作流: 在已发布应用中运行,或者通过 API 调用工作流。

实战

在 Dify 平台中,创建工作流(Workflow)可以帮助您将复杂任务分解为多个步骤,自动化处理流程。以下是创建工作流的详细步骤:

步骤 1:登录 Dify(https://cloud.dify.ai/) 平台

图片

步骤 2:创建新应用

在主界面上,点击“创建空白应用”。在弹出的窗口中,选择“工作流”作为应用类型,填写应用的名称和描述,然后点击“创建”。

图片

步骤 3:设计工作流

进入工作流设计界面后,您将看到一个可拖拽的画布,默认情况下只有一个开始节点。

添加变量: 在开始节点中,您可以添加全局变量。例如,添加一个名为 city 的变量,用于后续节点的条件判断。

添加条件分支: 在开始节点后,点击加号(+)添加一个 IF 条件分支节点。设置条件,例如,当变量 city 包含“苏州”时,执行特定任务;否则,执行其他任务。

添加任务节点: 根据条件分支,添加相应的任务节点。例如,在条件成立时,添加一个“天气预报”功能节点;在条件不成立时,添加一个“大语言模型问答”功能节点。

添加结束节点: 在每个任务节点后,添加结束节点。在结束节点中,设置输出变量,以便查看任务执行结果。

图片

步骤 4:配置节点

根据每个节点的功能,配置其参数。例如,配置天气预报节点时,需要调用外部 API,并设置相应的请求参数和处理响应数据。

图片

步骤 5:调试与发布

完成工作流设计后,您可以使用调试功能测试工作流的执行情况,确保每个节点的配置正确。调试通过后,点击“发布”将工作流投入使用。

图片

步骤 6:运行工作流

发布后的工作流可以手动运行,或通过设置触发条件自动运行。您可以在运行历史中查看每次执行的结果和日志,方便排查问题。

图片

注意事项:

  • 接口调用: 如果工作流中需要调用外部 API,例如天气预报服务,需要在相应节点中配置 HTTP 请求,并处理返回的数据。

  • 变量管理: 合理使用全局变量和上下文变量,确保数据在各节点间正确传递。

  • 错误处理: 在关键节点添加错误处理机制,确保工作流在遇到异常时能够妥善处理。

通过上述步骤,您可以在 Dify 平台中创建并管理工作流,实现任务的自动化处理,提高工作效率。



总结

Dify 工作流(Workflow)是一种将复杂任务拆分为更小步骤的机制,旨在降低系统复杂度,减少对提示词技术和模型推理能力的依赖,从而提升大型语言模型(LLM)应用在复杂任务中的性能,提高系统的可解释性、稳定性和容错性。 

主要特点:

  • 类型多样化: Dify 工作流分为两种类型:

    • Chatflow: 面向对话类场景,包括客户服务、语义搜索,以及其他需要在构建响应时进行多步逻辑的对话式应用程序。

    • Workflow: 面向自动化和批处理场景,适用于高质量翻译、数据分析、内容生成、电子邮件自动化等应用程序。 丰富的节点支持: 为解决自动化和批处理场景中的复杂业务逻辑,工作流提供了丰富的逻辑节点,如代码节点、IF/ELSE 节点、模板转换、迭代节点等。此外,还提供定时和事件触发的能力,方便构建自动化流程。 WELCOME TO DIFY | DIFY

应用案例:

  • 内容生成: 通过 Dify 工作流,用户可以创建博客文章、产品描述或营销材料。只需提供一个大纲或主题,LLM 将利用其广泛的知识库生成引人入胜、信息丰富且结构良好的内容。 WELCOME TO DIFY | DIFY

  • 数据分析和报告: Dify 工作流可用于分析大型知识库并生成报告或摘要。通过提供相关信息给 LLM,它可以识别趋势、模式和洞察力,将原始数据转化为可操作的智能。 WELCOME TO DIFY | DIFY

使用体验:

用户分享了一些实用的 Dify 工作流,涵盖了文章仿写、小红书内容生成、教程编写等多个方面,展示了 Dify 工作流在实际应用中的广泛性和实用性。 

最后:

Dify 工作流通过将复杂任务模块化,提供了灵活且高效的解决方案,增强了 LLM 应用的性能和可靠性,适用于多种业务场景。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

### 将模型接入Dify工作流指南 #### 创建自定义工作流节点以集成模型 为了使第三方模型能够顺利融入到Dify工作流中,通常需要创建特定于该模型的自定义节点。此过程涉及编写一段脚本或函数来调用外部API接口或是加载本地部署的服务实例,并将其封装成可以在Dify环境中执行的任务单元[^1]。 对于已经发布的版本v0.6.9而言,由于其特性允许将自定义工作流作为工具发布,因此一旦完成了上述提到的针对具体AI模型定制化开发之后,就可以轻松地把它们注册成为新的agent或者是workflow的一部分,在整个平台内被广泛利用而无需再次重复相同逻辑的设计与编码劳动[^2]。 #### 利用并行处理能力加速模型推理 当涉及到复杂的数据集或者多阶段预测任务时,合理运用并发机制往往能带来显著性能提升。基于这一点考虑,在最新版v0.8.0里引入了一系列有关并行计算的支持选项——无论是简单的同步操作还是更复杂的嵌套结构乃至循环体内部分支的同时启动均得到了妥善解决;这意味着如果所要对接入系统的机器学习算法适合采用分布式架构的话,则完全可以借助这些功能模块进一步优化整体效率[^3]。 ```python import requests def call_model_api(data): url = "http://example.com/api/predict" response = requests.post(url, json=data) if response.status_code == 200: result = response.json() return result['prediction'] else: raise Exception(f"Model API error: {response.text}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值