[笔记]R语言中pheatmap与python中seaborn.clustermap的一些区别

一般来说,R中使用pheatmap绘制聚类热力图的写法如下:

pheatmap(sample_1,scale = "row",fontsize=6, fontsize_col = 8,cluster_cols = F, 
         color = colorRampPalette(c("steelblue", "white", "firebrick3"))(10),
)

这里的第一参数为数据,第二个参数 scale="row" 表示对于行数据进行 归一化cluster_cols 表示是否对列进行聚类分析,后面的参数即图的样式等等。

更加具体的各参数的说明参考文档

在python中,一般来说使用 seaborn.clustermap 这个包中的函数来进行聚类分析图的绘制,一种写法如下:

sns.clustermap(simple_data, z_score=0, method='complete',
				 col_cluster=False,cmap='RdBu', 
				 figsize=(len(simple_data.columns),
				  len(simple_data.index)))
  • 其中传入的数据为 Dataframe 类型的数据,
  • clustermap中对于数据的归一化处理有两种,一种为 z-scale 变换,另一种为 standard_scale 方式,且值为0表示对行数据归一化,1表示对列归一化,**经过实验,只有 z-scale 变换得到的图像的结果与R中的pheatmap默认的处理结果一致
  • 其他的参数是颜色等的设置

所以如果发现同样的数据,使用不同的方式处理后得到的聚类热力图不一致,可以尝试指定参数 z-scale

此外,pheatmap默认的聚类方法是 complete 且距离的计算方式是 欧几里得距离
而python中默认的聚类方式是 average ,距离计算方式也是 欧几里得距离
所以后一段代码中制定了 method

seaborn.clustermap的其他参数说明

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值