python数据可视化seaborn(一)—— 整体样式与调色板

本文介绍了Python的seaborn库在数据可视化中的图表风格和调色板设置,包括sns.set()、set_style()、despine()、axes_style()和不同类型的调色板,如分类、顺序和发散调色板。通过示例展示了如何使用seaborn创建更具吸引力的图表。
摘要由CSDN通过智能技术生成

很久之前对seaborn有过一些涉及但是没有深入探究,这次有趁着有数据可视化的需求,就好好学一学

Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图,为数据分析提供了很大的便利性。但是应该把Seaborn视为matplotlib的补充,而不是替代物。

这次就从最基本的图标风格和调色板开始,学习seaborn。

图表风格(style)设置

# 利用 matplotlib创建一个正弦函数及图表

def sinplot(flip=1):
    x = np.linspace(0, 14, 100)
#     fig = plt.figure(figsize=(10,6))
    for i in range(1,7):
        plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip)

sinplot()

在这里插入图片描述

sns.set() 设置样式参数

seaborn.set(context =‘notebook’,style =‘darkgrid’,palette =‘deep’,font =‘sans-serif’,font_scale = 1,color_codes = True,rc = None)

sns.set(style='darkgrid',font_scale=1.5)

# 利用此方法可以快速设置seaborn的默认风格,当然也可以添加参数设置其他风格
# font_scale:float,单独的缩放因子可以独立缩放字体元素的大小。

sinplot()

在这里插入图片描述

set_style() 设置图标风格

seaborn.set_style(style = None,rc = None )

# 切换seaborn图表风格
# 风格选择包括:"white", "dark", "whitegrid", "darkgrid", "ticks"
# rc:dict,可选,参数映射以覆盖预设的seaborn样式字典中的值

fig = plt.figure(figsize=(10, 8))

ax1 = fig.add_subplot(2, 1, 1)
sns.set_style('whitegrid',{
   "xtick.major.size": 10, "ytick.major.size": 10})
data = np.random.normal(size=(20,6)) + np.arange(6) / 2
sns.boxplot(data=data)


ax2 =  fig.add_subplot(2, 1, 2)
sinplot()

在这里插入图片描述

sns.despine() 设置坐标轴

seaborn.despine(fig=None, ax=None, top=True, right=True, left=False, bottom=False, offset=None, trim=False)

# 设置图表坐标轴

sns.set(style='ticks',font_scale=1)
# 设置风格

fig = plt.figure(figsize=(10,12))
plt.subplots_adjust(hspace=0.3)   # 调整子图间距
# 图表基本设置

ax1 = fig.add_subplot
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值