Python进行参数调优GridSearchCV和RandomizedSearchCV

# -*- coding: utf-8 -*-
"""
Created on Wed Sep  6 14:30:24 2017

@author: 飘的心
"""

from sklearn.datasets import load_digits
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn import metrics

data=load_digits()
x=data.data
y=data.target
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0,test_size=0.25,
                                              stratify=y)
#采用暴力搜索,所有参数进行组合,然后选择最好的参数
tuned_parameters=[{'penalty':['l1','l2'],
                   'C':[0.01,0.05,0.1,0.5,1,5,10,50,100],
                    'solver':['liblinear'],
                    'multi_class':['ovr']},
                {'penalty':['
XGBoost 是一个强大的机器学习算法,它的性能和准确率在许多机器学习竞赛中都表现出色。为了获得最佳的性能和准确率,需要进行参数调优。 在 XGBoost 中,有许多可以调整的参数,包括学习率(learning rate)、树的深度(max_depth)、叶子节点最小权重(min_child_weight)等等。调整这些参数的最佳方法是使用交叉验证,以便确定最佳的参数组合。 以下是一些常用的参数调优方法: 1. 网格搜索:网格搜索是一种简单有效的参数调优方法。它通过在一组预定义的参数进行交叉验证来确定最佳的参数组合。在 Python 中,可以使用 GridSearchCV 类来实现网格搜索。 2. 随机搜索:随机搜索是一种更高效的参数调优方法,它不需要在预定义的参数进行搜索。相反,它随机选择一组参数,并在这组参数进行交叉验证。在 Python 中,可以使用 RandomizedSearchCV 类来实现随机搜索。 3. 贝叶斯优化:贝叶斯优化是一种基于模型的参数调优方法,它可以利用先前的参数组合信息来确定下一个最佳参数组合。在 Python 中,可以使用 BayesianOptimization 库来实现贝叶斯优化。 在调整 XGBoost 参数时,要特别注意 DMatrix 类中的参数。DMatrix 是 XGBoost 中用于存储数据的类,它接受许多参数,包括数据类型、缺失值标记和权重等。在 Python 中,可以将 Pandas DataFrame 转换为 DMatrix。 以下是一个简单的 XGBoost 参数调优示例: ``` import xgboost as xgb from sklearn.metrics import mean_squared_error from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split import numpy as np # 加载数据集 boston = load_boston() X, y = boston.data, boston.target # 将数据集划分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123) # 将数据集转换为 DMatrix 类型 dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) # 设置 XGBoost 参数 params = { 'max_depth': 3, 'eta': 0.1, 'objective': 'reg:squarederror' } # 训练模型 model = xgb.train(params, dtrain) # 预测测试集 y_pred = model.predict(dtest) # 计算均方误差 mse = mean_squared_error(y_test, y_pred) print("MSE: %.2f" % mse) ``` 在此示例中,我们使用了 XGBoost 的默认参数来训练模型。要进行参数调优,只需更改 params 字典中的参数值即可。 希望这对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值