python之tile函数,shape函数,argsort函数介绍

1.tile函数:

tile函数是模板numpy.lib.shape_base中的函数。函数的形式是tile(A,reps),A的类型几乎所有类型都可以:array, list, tuple, dict, matrix以及基本数据类型int, string, float以及bool类型。reps的类型也很多,可以是tuple,list, dict, array, int,bool.但不可以是float, string, matrix类型。

>>> from numpy import *
>>> tile(2,3)
array([2, 2, 2])
>>> tile((2,3),2)
array([2, 3, 2, 3])
>>> a=[[1,3],[2,4]]
>>> tile(a,3)
array([[1, 3, 1, 3, 1, 3],
       [2, 4, 2, 4, 2, 4]])
>>> tile(a,[2,2])
array([[1, 3, 1, 3],
       [2, 4, 2, 4],
       [1, 3, 1, 3],
       [2, 4, 2, 4]])
>>> tile(a,[1,3])
array([[1, 3, 1, 3, 1, 3],
       [2, 4, 2, 4, 2, 4]])
>>> a
[[1, 3], [2, 4]]
2.shape函数
shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度。它的输入参数可以使一个整数表示维度,也可以是一个矩阵。

>>> b=eye(2)
>>> b
array([[ 1.,  0.],
       [ 0.,  1.]])
>>> b.shape
(2, 2)

3.argsort函数

argsort函数返回的是数组值从小到大的索引值,在Python中使用help帮助,即:

>>> import numpy
>>> help(numpy.argsort)
Help on function argsort in module numpy.core.fromnumeric:

argsort(a, axis=-1, kind='quicksort', order=None)
    Returns the indices that would sort an array.
    
    Perform an indirect sort along the given axis using the algorithm specified
    by the `kind` keyword. It returns an array of indices of the same shape as
    `a` that index data along the given axis in sorted order.
    
    Parameters
    ----------
    a : array_like
        Array to sort.
    axis : int or None, optional
        Axis along which to sort.  The default is -1 (the last axis). If None,
        the flattened array is used.
    kind : {'quicksort', 'mergesort', 'heapsort'}, optional
        Sorting algorithm.
    order : list, optional
        When `a` is an array with fields defined, this argument specifies
        which fields to compare first, second, etc.  Not all fields need be
        specified.
    
    Returns
    -------
    index_array : ndarray, int
        Array of indices that sort `a` along the specified axis.
        In other words, ``a[index_array]`` yields a sorted `a`.
    
    See Also
    --------
    sort : Describes sorting algorithms used.
    lexsort : Indirect stable sort with multiple keys.
    ndarray.sort : Inplace sort.
    
    Notes
    -----
    See `sort` for notes on the different sorting algorithms.
    
    As of NumPy 1.4.0 `argsort` works with real/complex arrays containing
    nan values. The enhanced sort order is documented in `sort`.
    
    Examples
    --------
    One dimensional array:
    
    >>> x = np.array([3, 1, 2])
    >>> np.argsort(x)
    array([1, 2, 0])
    
    Two-dimensional array:
    
    >>> x = np.array([[0, 3], [2, 2]])
    >>> x
    array([[0, 3],
           [2, 2]])
    
    >>> np.argsort(x, axis=0)
    array([[0, 1],
           [1, 0]])
    
    >>> np.argsort(x, axis=1)
    array([[0, 1],
           [0, 1]])
    
    Sorting with keys:
    
    >>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
    >>> x
    array([(1, 0), (0, 1)],
          dtype=[('x', '<i4'), ('y', '<i4')])
    
    >>> np.argsort(x, order=('x','y'))
    array([1, 0])
    
    >>> np.argsort(x, order=('y','x'))
    array([0, 1])

参考:

http://www.ithao123.cn/content-770921.html

http://blog.csdn.net/maoersong/article/details/21875705

你可以使用 Python 的内置函数 `dir()` 来查看一个库(模块)中所有的函数和变量。例如,如果你想查看 NumPy 库中的所有函数和变量,可以在 Python 中输入以下代码: ```python import numpy as np print(dir(np)) ``` 这将会打印出 NumPy 库中所有的函数和变量名称,如下所示: ``` ['__builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', '__spec__', 'absolute', 'absolute_import', 'add', 'alen', 'all', 'allclose', 'alltrue', 'alterdot', 'amax', 'amin', 'angle', 'any', 'append', 'apply_along_axis', 'apply_over_axes', 'arange', 'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh', 'argmax', 'argmin', 'argpartition', 'argsort', 'argwhere', 'around', 'array', 'array2string', 'array_equal', 'array_equiv', 'array_repr', 'array_split', 'array_str', 'asanyarray', 'asarray', 'asarray_chkfinite', 'ascontiguousarray', 'asfarray', 'asfortranarray', 'asmatrix', 'asscalar', 'atleast_1d', 'atleast_2d', 'atleast_3d', 'average', 'bartlett', 'base_repr', 'beta', 'binary_repr', 'bincount', 'bitwise_and', 'bitwise_not', 'bitwise_or', 'bitwise_xor', 'blackman', 'block', 'bmat', 'bool', 'bool8', 'broadcast', 'broadcast_arrays', 'broadcast_to', 'busday_count', 'busday_offset', 'busdaycalendar', 'byte', 'bytes', 'bytes0', 'bytes_', 'c_', 'can_cast', 'cast', 'cbrt', 'cdouble', 'ceil', 'chararray', 'choose', 'clip', 'column_stack', 'common_type', 'compare_chararrays', 'compat', 'complex', 'complex128', 'complex64', 'complex_', 'compress', 'concatenate', 'conjugate', 'contains', 'convolve', 'copy', 'core', 'corrcoef', 'correlate', 'cos', 'cosh', 'count_nonzero', 'cov', 'cross', 'ctypeslib', 'cumprod', 'cumproduct', 'cumsum', 'datetime64', 'datetime_as_string', 'deg2rad', 'degrees', 'delete', 'deprecate', 'diag', 'diag_indices', 'diag_indices_from', 'diagflat', 'diagonal', 'diff', 'digitize', 'disp', 'divide', 'dot', 'double', 'dsplit', 'dstack', 'dtype', 'dump', 'dumps', 'ediff1d', 'einsum', 'elect', 'element_wise', 'empty', 'empty_like', 'equal', 'errstate', 'exp', 'expand_dims', 'expm1', 'extract', 'eye', 'fabs', 'fastCopyAndTranspose', 'fft', 'fill_diagonal', 'find_common_type', 'finfo', 'fix', 'flat', 'flatiter', 'flatten', 'fliplr', 'flipud', 'float', 'float128', 'float16', 'float32', 'float64', 'float_', 'floor', 'floor_divide', 'fmax', 'fmin', 'fmod', 'format_float_positional', 'format_float_scientific', 'frexp', 'frombuffer', 'fromfile', 'fromfunction', 'fromiter', 'frompyfunc', 'fromregex', 'fromstring', 'full', 'full_like', 'fv', 'gcd', 'generic', 'genfromtxt', 'get_array_wrap', 'get_include', 'get_numarray_include', 'get_printoptions', 'getbufsize', 'geterr', 'geterrcall', 'geterrobj', 'gradient', 'greater', 'greater_equal', 'hamming', 'hanning', 'heaviside', 'histogram', 'histogram2d', 'histogram_bin_edges', 'histogramdd', 'hsplit', 'hstack', 'hypot', 'i0', 'identity', 'ifft', 'imag', 'in1d', 'index_exp', 'indices', 'inf', 'info', 'inner', 'insert', 'int', 'int0', 'int16', 'int32', 'int64', 'int8', 'int_', 'integer', 'interp', 'intersect1d', 'intersect1d_nu', 'intp', 'invert', 'isclose', 'iscomplex', 'iscomplexobj', 'isfinite', 'isfortran', 'isinf', 'isnan', 'isnat', 'isneginf', 'isposinf', 'isreal', 'isrealobj', 'isscalar', 'issctype', 'issubclass_', 'issubdtype', 'issubsctype', 'iterable', 'ix_', 'kaiser', 'kron', 'ldexp', 'left_shift', 'less', 'less_equal', 'lexsort', 'lib', 'linalg', 'linspace', 'load', 'loads', 'loadtxt', 'log', 'log10', 'log1p', 'log2', 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'logspace', 'lstsq', 'ma', 'mafromtxt', 'mask_indices', 'mat', 'math', 'matmul', 'matrix', 'max', 'maximum', 'maximum_sctype', 'may_share_memory', 'mean', 'median', 'memmap', 'meshgrid', 'mgrid', 'min', 'minimum', 'mintypecode', 'mirr', 'mod', 'modf', 'moveaxis', 'msort', 'multiply', 'nan', 'nan_to_num', 'nanargmax', 'nanargmin', 'nancumprod', 'nancumsum', 'nanmax', 'nanmean', 'nanmedian', 'nanmin', 'nanpercentile', 'nanprod', 'nanquantile', 'nanstd', 'nansum', 'nanvar', 'nanwarnings', 'ndenumerate', 'ndfromtxt', 'ndim', 'ndindex', 'negative', 'nested_iters', 'newaxis', 'nextafter', 'nonzero', 'not_equal', 'np', 'numarray', 'number', 'obj2sctype', 'object', 'object0', 'object_', 'ogrid', 'oldnumeric', 'ones', 'ones_like', 'outer', 'packbits', 'pad', 'partition', 'percentile', 'pi', 'piecewise', 'pinv', 'place', 'pmt', 'poly', 'poly1d', 'polyadd', 'polyder', 'polydiv', 'polyfit', 'polyint', 'polymul', 'polysub', 'polyval', 'power', 'ppmt', 'print_function', 'product', 'promote_types', 'ptp', 'put', 'put_along_axis', 'putmask', 'pv', 'quantile', 'r_', 'rad2deg', 'radians', 'random', 'rank', 'rate', 'ravel', 'real', 'real_if_close', 'recarray', 'reciprocal', 'record', 'remainder', 'repeat', 'require', 'reshape', 'resize', 'result_type', 'right_shift', 'rint', 'roll', 'rollaxis', 'roots', 'rot90', 'round', 'round_', 'row_stack', 's_', 'safe_eval', 'save', 'savetxt', 'savez', 'savez_compressed', 'sctype2char', 'sctypeDict', 'sctypeNA', 'sctypes', 'searchsorted', 'select', 'set_numeric_ops', 'set_printoptions', 'set_string_function', 'setbufsize', 'setdiff1d', 'seterr', 'seterrcall', 'seterrobj', 'setxor1d', 'shape', 'shares_memory', 'show_config', 'sign', 'signbit', 'signedinteger', 'sin', 'sinc', 'sinh', 'size', 'slice', 'solve', 'sort', 'sort_complex', 'source', 'spacing', 'split', 'sqrt', 'square', 'squeeze', 'stack', 'std', 'str', 'str0', 'str_', 'subtract', 'sum', 'svd', 'swapaxes', 'sys', 'take', 'take_along_axis', 'tan', 'tanh', 'tensordot', 'test', 'testing', 'tile', 'timedelta64', 'trace', 'transpose', 'trapz', 'tri', 'tril', 'tril_indices', 'tril_indices_from', 'trim_zeros', 'triu', 'triu_indices', 'triu_indices_from', 'true_divide', 'trunc', 'typeDict', 'typeNA', 'typename', 'ubyte', 'ufunc', 'uint', 'uint0', 'uint16', 'uint32', 'uint64', 'uint8', 'uintc', 'uintp', 'ulonglong', 'union1d', 'unique', 'unique1d', 'unpackbits', 'unravel_index', 'unsignedinteger', 'unwrap', 'ushort', 'vander', 'var', 'vdot', 'vectorize', 'version', 'void', 'void0', 'vsplit', 'vstack', 'warnings', 'weibull', 'where', 'who', 'zeros', 'zeros_like'] ``` 注意,`dir()` 会输出所有名称,包括 Python 内置函数、变量和 NumPy 模块中的名称。如果你只想查看 NumPy 模块中的名称,你可以使用 `dir(np.core)`。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值