本篇内容依然是向量的运算,只不过不属于线性运算,内容包括向量的数量积与向量积。
一、向量的数量积(内积、点乘,参与运算的是向量,结果是数)
(一)问题产生的背景与表达
(二)向量数量积定义(几何)
向量数量积表示的运算就是两个向量的模
乘以两个向量夹角的余弦
(三)数量积的性质
(四)向量的数量积的代数描述
例题
例1
二、向量积(叉积、叉乘,参与运算的是向量,结果是向量)
(一)产生的背景:法向量
空间中向量a、b构成一个平面,找到一个向量,既垂直于a向量,又垂直于b向量,这个向量就是法向量
向量向量积的定义
- 几何定义
-
方向:右手准则
-
大小:
-
注解
①两个向量叉乘为0向量则两个向量平行,充要条件
②a、b两个向量叉乘的结果既垂直于a向量又垂直于b向量
③叉乘运算不满足交换律,满足负交换律
右手准则验证
④
- 代数描述
上面计算的这个代数描述是要记住的 [手动滑稽]
记不住哈,给个方法
例题
例1
*重要定理
例题
例2
总结
因为作者总是分不清点乘和叉乘,所以这边写点区分它俩的总结。
点乘是数量积又叫内积,向量的计算结果是一个数
叉乘是向量积又叫叉积,向量的计算结果还是向量
点乘和叉乘都要用到的向量的模和夹角
点乘对应cos,数量积为零,两向量垂直
叉乘对应sin,向量积为零,两向量平行
本篇完。