8.2 向量数量积与向量积(点乘与叉乘)

本篇内容依然是向量的运算,只不过不属于线性运算,内容包括向量的数量积与向量积。

一、向量的数量积(内积、点乘,参与运算的是向量,结果是数)

(一)问题产生的背景与表达
在这里插入图片描述

(二)向量数量积定义(几何)
向量数量积表示的运算就是两个向量的模乘以两个向量夹角的余弦
在这里插入图片描述
(三)数量积的性质在这里插入图片描述
(四)向量的数量积的代数描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

例题

例1
在这里插入图片描述

二、向量积(叉积、叉乘,参与运算的是向量,结果是向量)

(一)产生的背景:法向量在这里插入图片描述
空间中向量a、b构成一个平面,找到一个向量,既垂直于a向量,又垂直于b向量,这个向量就是法向量
向量向量积的定义在这里插入图片描述

  • 几何定义
    • 方向:右手准则在这里插入图片描述

    • 大小:在这里插入图片描述

注解
①两个向量叉乘为0向量则两个向量平行,充要条件
在这里插入图片描述


②a、b两个向量叉乘的结果既垂直于a向量又垂直于b向量

在这里插入图片描述


③叉乘运算不满足交换律,满足负交换律
在这里插入图片描述
右手准则验证在这里插入图片描述
在这里插入图片描述

  • 代数描述
    在这里插入图片描述
    上面计算的这个代数描述是要记住的 [手动滑稽]
    记不住哈,给个方法
    在这里插入图片描述

例题

例1
在这里插入图片描述


*重要定理
在这里插入图片描述

例题

例2在这里插入图片描述

总结

因为作者总是分不清点乘和叉乘,所以这边写点区分它俩的总结。

点乘是数量积又叫内积,向量的计算结果是一个数
叉乘是向量积又叫叉积,向量的计算结果还是向量

点乘和叉乘都要用到的向量的模和夹角
点乘对应cos,数量积为零,两向量垂直
叉乘对应sin,向量积为零,两向量平行

本篇完。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值