一、平面点集
-
去心邻域:比对数轴的去心邻域概念,平面上一个点的去心邻域就是以该点为中心取一个大于0的值为半径的圆标识的范围(不包括圆心点和邻域边界)
-
邻域:去心邻域+圆心点
-
开集:所谓开集,即点集无孤立点,同时点集无边界点,比对开区间,即开集取不到边界,对于点集内任意点M,存在δ>0,使M的邻域包含于该点集内。
-
连通:点集没有被完全分隔开
-
开区域:连通的开集
-
闭区域:开区域+区域边界
多元函数的概念
- 多元函数:还是比对一元函数理解,一元函数是有一个自变量x和一个因变量y,伴随x的变化,总存在唯一的y与之对应(x与y之间带关系可以是一对一、多对一但不能一对多);多元函数就是自变量不止一个,仅此而已
- 定义域:自变量的取值范围
- 值域:定义域中所有自变量的值对应的所有的函数值组成的集合
多元函数的极限
emmm,我们还是比对一元函数带极限来理解吧,我这边做个简单回顾,如果忘记了,请翻阅本系列博客第一章
- 一元函数的极限
- 二元函数的极限
是不是差不多?是差不多,唯一不同的地方,一元函数取去心邻域时可以看作实在数轴上取,二元函数取去心邻域就变成了我们本篇中介绍的去心邻域的状态了,是这样的
注解
二元函数和一元函数的去心邻域取法的不同决定了二元函数(或者说多元函数)极限的复杂性,我们看上面这个图,研究一元函数带极限时,只要讨论函数在某一点的左右极限就可以了,但是对于多元函数,我们根据上面带图可以看出,极限的方向有无数个。
例题
例1
例2
例3
四、多元函数的连续性与性质
- 连续性:极限值=函数值,由于上述带一元函数与多元函数的差异,所以多元函数不用考虑左右极限
多元函数在有界闭区域上的性质
比对一元函数在闭区间上的性质
- 最值定理
- 有界定理
- 介值定理
- 零点定理
本篇完。