9.1 多元微分学及应用——多元函数的基本概念

一、平面点集

  • 去心邻域:比对数轴的去心邻域概念,平面上一个点的去心邻域就是以该点为中心取一个大于0的值为半径的圆标识的范围(不包括圆心点和邻域边界)

  • 邻域:去心邻域+圆心点

  • 开集:所谓开集,即点集无孤立点,同时点集无边界点,比对开区间,即开集取不到边界,对于点集内任意点M,存在δ>0,使M的邻域包含于该点集内。

  • 连通:点集没有被完全分隔开

  • 开区域:连通的开集

  • 闭区域:开区域+区域边界

多元函数的概念

  • 多元函数:还是比对一元函数理解,一元函数是有一个自变量x和一个因变量y,伴随x的变化,总存在唯一的y与之对应(x与y之间带关系可以是一对一、多对一但不能一对多);多元函数就是自变量不止一个,仅此而已
  • 定义域:自变量的取值范围
  • 值域:定义域中所有自变量的值对应的所有的函数值组成的集合

多元函数的极限

emmm,我们还是比对一元函数带极限来理解吧,我这边做个简单回顾,如果忘记了,请翻阅本系列博客第一章

  • 一元函数的极限在这里插入图片描述
  • 二元函数的极限在这里插入图片描述

是不是差不多?是差不多,唯一不同的地方,一元函数取去心邻域时可以看作实在数轴上取,二元函数取去心邻域就变成了我们本篇中介绍的去心邻域的状态了,是这样的在这里插入图片描述

注解

二元函数和一元函数的去心邻域取法的不同决定了二元函数(或者说多元函数)极限的复杂性,我们看上面这个图,研究一元函数带极限时,只要讨论函数在某一点的左右极限就可以了,但是对于多元函数,我们根据上面带图可以看出,极限的方向有无数个。

例题

例1在这里插入图片描述
例2在这里插入图片描述
例3在这里插入图片描述

四、多元函数的连续性与性质

  • 连续性:极限值=函数值,由于上述带一元函数与多元函数的差异,所以多元函数不用考虑左右极限

多元函数在有界闭区域上的性质
比对一元函数在闭区间上的性质

  • 最值定理
  • 有界定理
  • 介值定理
  • 零点定理

本篇完。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值