3.3 泰勒(Taylor)公式和麦克劳林(Maclaurin)公式

本篇内容为泰勒公式和麦克劳林公式,主要用于近似计算,还是先搞个引入吧。

引子

f(x)在x=x0的邻域内n+1阶可导(包含x=x0)。现在用一个n次多项式Pn(x)近似的表示f(x)
Pn(x)=a0+a1(x-x0)+a2(x-x0)2+…+an(x-x0)n
Pn(x)的项数越多次数越高则值越精确,与f(x)越接近,可以理解成Pn(x)每多一项就做一次修正。

那么Pn(x)应该满足什么样的条件呢?
Pn(x0)=f(x0) 既然近似,二者在x=x0这一点的函数值应该相等,不然误差太大了
Pn’(x0)=f’(x0)
Pn’’(x0)=f’’(x0)
……
Pn(n)(x0)=f(n)(x0)
同理,Pn(x)和f(x)在x=x0处的一阶导数和高阶导数应该相等,表示二者离散的速度非常慢,从图像上看,二者应该几乎重合。

下面开始处理这个多项式
代入x=x0,Pn(x0)=a0=f(0)

  • 通过求导确定系数
    在这里插入图片描述
    在这里插入图片描述

所以Pn(x)就应该是这个样子的在这里插入图片描述
处理近似
很明显可以知道Pn(x)和f(x)之间是有误差的对吧,Pn(x)是个多项式,说的在明白一点,就算经过多次修正,用一个不是f(x)的东西去表示f(x)一定会存在误差的。这个误差成为余项,定义为Rn(x)

f(x)可以表示为多项式和余项(误差)之和即f(x)=Pn(x)+Rn(x)
Rn(x)则可以表示为Rn(x)=f(x)-Pn(x)

正文开始 😆

泰勒(Taylor)公式

定理1
若f(x)在x=x0邻域内n+1阶可导
则f(x)可以表示为f(x)=Pn(x)+Rn(x),其中Pn(x)表示如下在这里插入图片描述
Rn(x)表示如下
在这里插入图片描述

证明
先梳理一下已知条件
在这里插入图片描述
上述条件必然是成立的,因为就是用这些限制条件找到的Pn(x)
开始证明(作者写完的时候看着也头皮发麻,没事 慢慢看)
在这里插入图片描述
定理2
若f(x)在x=x0邻域内n阶可导
则f(x)可以表示为f(x)=Pn(x)+Rn(x),其中Pn(x)表示如下在这里插入图片描述
Rn(x)是(x-x0)n的高阶无穷小在这里插入图片描述
证明
还是先梳理已知条件
在这里插入图片描述
Pn(x)长成这个鬼样子,一定满足以下条件
在这里插入图片描述
在这里插入图片描述
根据无穷小的比较层次,Rn(x)是(x-x0)n的高阶无穷小,即在这里插入图片描述
Lagrange型余项和Peano型余项
5句话

  1. Lagrange型余项是这个样子的在这里插入图片描述
  2. Peano型余项是这个样子的在这里插入图片描述
  3. Lagrange型余项和Peano型余项都是Taylor公式的余项
  4. 邻域内n+1阶可导使用Lagrange型余项;邻域内n阶可导使用Peano型余项
  5. emmmm算了就4句吧

麦克劳林(Maclaurin)公式

这一块内容很好理解
啥是Maclaurin公式?
f(x)=Pn(x)+Rn(x)在这里插入图片描述
多次重复,加强记忆
当x0=0时,Taylor公式就变成Maclaurin公式了,那么Maclaurin公式中的多项式Pn(x)就应该是这个样子的在这里插入图片描述
余项的使用条件还是一样的

常用的麦克劳林公式
在这里插入图片描述

例题

例1
在这里插入图片描述
例2
在这里插入图片描述
例3
在这里插入图片描述
例4
在这里插入图片描述

好了 本篇内容宣告完结,是不是感觉终于完了?鉴于本篇内容较多,作者在写的时候已经尽量精简了,本篇没有总结部分,如果理解有困难,就多看几遍吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值