层次式架构是一种将系统划分为多个层次的软件架构模式,每个层次都有特定的职责和功能,并且通过定义良好的接口与其他层次进行交互。以下是一些常用的层次式架构:
一、三层架构
- 表示层(Presentation Layer):主要负责与用户进行交互,接收用户的输入并将系统的输出展示给用户。它通常包括用户界面设计、网页、移动应用界面等。例如,在一个电商网站中,用户通过浏览器访问网站,看到的商品展示、购物车、结账页面等都属于表示层。
- 业务逻辑层(Business Logic Layer):也称为应用层,是系统的核心部分,负责处理业务逻辑和规则。它接收来自表示层的请求,调用相应的业务逻辑方法进行处理,并将结果返回给表示层。比如,在电商网站中,计算商品折扣、库存管理、订单处理等功能都在业务逻辑层实现。
- 数据访问层(Data Access Layer):负责与数据库或其他数据存储介质进行交互,执行数据的读取、写入、更新和删除操作。它将业务逻辑层的请求转换为对数据库的操作,并将数据库返回的结果转换为业务逻辑层能够处理的格式。例如,在电商网站中,将用户注册信息、商品信息、订单信息等存储到数据库中,以及从数据库中查询这些信息,都是数据访问层的职责。
二、多层架构(N - Tier Architecture)
在三层架构的基础上,根据具体业务需求,可能会进一步细分出更多的层次,形成多层架构。
- 表现层(Presentation Tier):与三层架构中的表示层类似,主要负责用户界面的展示和交互。
- 应用层(Application Tier):包含了业务逻辑和应用程序的核心功能。它可以进一步细分为多个子层,如业务规则层、服务层等。业务规则层负责定义和执行业务规则,服务层则提供各种服务接口,供其他层调用。
- 领域层(Domain Tier):也称为领域模型层,它是对业务领域的抽象和建模,包含了业务领域的核心概念、实体和关系。领域层独立于具体的技术实现,专注于业务逻辑的表达和实现。
- 数据访问层(Data Access Tier):与三层架构中的数据访问层功能相同,负责与数据存储进行交互,实现数据的持久化和查询。
三、微服务架构(Microservices Architecture)
可以看作是一种特殊的层次式架构,它将系统拆分为多个小型的、独立的微服务,每个微服务都有自己的职责和功能,可以独立部署和扩展。
- 客户端层(Client Layer):与传统架构中的表示层类似,负责与用户进行交互,提供用户界面。客户端可以是网页、移动应用或其他类型的前端应用。
- 微服务层(Microservices Layer):由多个微服务组成,每个微服务都围绕着一个特定的业务功能或领域进行构建,例如用户管理微服务、订单管理微服务、商品管理微服务等。这些微服务之间通过轻量级的通信机制(如 RESTful API)进行交互。
- 数据层(Data Layer):每个微服务都有自己独立的数据存储,可以是数据库、文件系统或其他数据存储方式。微服务负责管理和维护自己的数据,不同微服务之间的数据交互通过微服务间的接口进行。
四、云原生架构(Cloud - Native Architecture)
这是一种基于云计算技术的层次式架构,充分利用了云平台的弹性、可扩展性和分布式特性。
- 边缘层(Edge Layer):位于云原生架构的边缘,负责处理与外部世界的交互,如接收用户请求、处理物联网设备的数据等。边缘层可以包括边缘服务器、内容分发网络(CDN)等组件,用于缓存和处理部分请求,减少对后端服务的压力。
- 应用层(Application Layer):包含了云原生应用的核心业务逻辑。应用层由多个微服务或容器组成,这些微服务和容器可以根据业务需求进行灵活的部署和扩展。云原生应用通常采用容器化技术(如 Docker)进行封装,以便在不同的环境中快速部署和运行。
- 平台层(Platform Layer):提供了云原生应用运行的基础平台,包括容器编排引擎(如 Kubernetes)、服务网格(Service Mesh)、自动化运维工具等。平台层负责管理容器的生命周期、服务的发现和路由、流量管理、监控和日志等功能,为应用层提供了一个可靠、高效的运行环境。
- 数据层(Data Layer):用于存储和管理云原生应用的数据。数据层可以包括各种类型的数据库(如关系型数据库、NoSQL 数据库)、数据仓库、消息队列等。云原生架构通常采用分布式数据存储和处理技术,以满足大规模数据的存储和处理需求。