系数矩阵为方阵的线性方程组解的情况

系数矩阵为方阵的线性方程组解的情况

下面这个问题可能勾起你对往日青葱岁月的回忆。对于线性方程组 A x = b ( A 为 n 阶 方 阵 ) Ax=b(A为n阶方阵) Ax=bAn

  • 什么情况下无解?
  • 什么情况下有唯一解?
  • 什么情况下有多个解?

针对齐次线性方程组( b = 0 b=0 b=0)和非齐次线性方程组( b ≠ 0 b\neq0 b=0)要分类讨论。

1.齐次线性方程组

  • 不存在无解的情况,至少有 0 0 0
  • d e t ( A ) ≠ 0 det(A)\neq0 det(A)=0(等价于 r ( A ) = n r(A)=n r(A)=n),解是唯一的,且只有 0 0 0
  • d e t ( A ) = 0 det(A)=0 det(A)=0(等价于 r ( A ) < n r(A)<n r(A)<n),解是不唯一的,有无穷多解

2.非齐次线性方程组

记: 系数矩阵的秩为 r ( A ) r(A) r(A),增广矩阵的秩为 r ( A , b ) r(A,b) r(A,b),未知数的个数为 n n n

  • r ( A ) < r ( A , b ) r(A)<r(A,b) r(A)<r(A,b),则方程组无解
  • r ( A ) = r ( A , b ) = n r(A)=r(A,b)=n r(A)=r(A,b)=n,则方程组有唯一解
  • r ( A ) = r ( A , b ) < n r(A)=r(A,b)<n r(A)=r(A,b)<n,则方程组有无穷多解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值