系数矩阵为方阵的线性方程组解的情况
下面这个问题可能勾起你对往日青葱岁月的回忆。对于线性方程组 A x = b ( A 为 n 阶 方 阵 ) Ax=b(A为n阶方阵) Ax=b(A为n阶方阵):
- 什么情况下无解?
- 什么情况下有唯一解?
- 什么情况下有多个解?
针对齐次线性方程组( b = 0 b=0 b=0)和非齐次线性方程组( b ≠ 0 b\neq0 b=0)要分类讨论。
1.齐次线性方程组
- 不存在无解的情况,至少有 0 0 0解
- d e t ( A ) ≠ 0 det(A)\neq0 det(A)=0(等价于 r ( A ) = n r(A)=n r(A)=n),解是唯一的,且只有 0 0 0解
- d e t ( A ) = 0 det(A)=0 det(A)=0(等价于 r ( A ) < n r(A)<n r(A)<n),解是不唯一的,有无穷多解
2.非齐次线性方程组
记: 系数矩阵的秩为 r ( A ) r(A) r(A),增广矩阵的秩为 r ( A , b ) r(A,b) r(A,b),未知数的个数为 n n n
- r ( A ) < r ( A , b ) r(A)<r(A,b) r(A)<r(A,b),则方程组无解
- r ( A ) = r ( A , b ) = n r(A)=r(A,b)=n r(A)=r(A,b)=n,则方程组有唯一解
- r ( A ) = r ( A , b ) < n r(A)=r(A,b)<n r(A)=r(A,b)<n,则方程组有无穷多解