数学基础
文章平均质量分 85
你代码写的像诗
不成体系的知识是没有力量的
展开
-
Bezier和B样条曲线
Bezier和B样条曲线文章目录Bezier和B样条曲线问题样条曲线的意义Bezier 曲线性质缺点实际应用B样条曲线优点几个概念其他参考资料前置知识请参考:插值与拟合问题已知若干点,如何得到通过这些点的一条光滑曲线?古代工匠的解决方法:把富有弹性的细长木条用压铁固定在样点上,在其他地方让它自由弯曲,且在结点处具有连续的曲率,然后沿木条画下曲线,成为样条曲线样条曲线的意义普通的多项式插值法,如Lagrange插值,存在Runge现象,即当多项式次数较高时存在稳定性、大幅度震荡等问题。可以通过类原创 2021-11-28 18:48:31 · 2897 阅读 · 0 评论 -
PCA、协方差矩阵以及在点云处理中的应用
PCA、协方差矩阵及其在点云处理中的应用文章目录PCA、协方差矩阵及其在点云处理中的应用目的PCA推导特征值分解奇异值分解奇异值分解同特征值分解的关系点云处理中的应用参考链接目的考虑一个问题:一组数据XP×NX_{P\times N}XP×N (数据维度为P,样本点数目为N),我们想对XXX进行降维,但最大限度的保留其中的信息,该怎么做?一种直观的想法是这样的,如果数据中存在高度相关的维度,那我们只保留其中的一个维度就可以了。对于普通的数据,各维度的相关性比较复杂,判断要保留哪些维度是一件比较困难原创 2021-07-18 20:39:15 · 5739 阅读 · 0 评论 -
重磅!一文读懂线性方程组的求解方法
重磅!一文读懂线性方程组的求解方法线性方程组的求解是计算机视觉工程实践中经常碰到的问题,这篇文章对其常见解法进行整理和总结.先上结论:针对线性方程组Ax=bAx=bAx=b的求解问题,我们按照系数矩阵AAA的性质进行分类讨论。1.AAA为方阵det(A)≠0det(A)\neq0det(A)=0方程组有唯一解.det(A)=0det(A)=0det(A)=0若 r(A)<r(A,b)r(A)<r(A,b)r(A)<r(A,b),则方程组无解r(A)=r(A,原创 2021-04-08 21:27:28 · 2371 阅读 · 6 评论 -
数值分析:插值与拟合
数值分析:插值与拟合复习下插值与拟合这部分课程内容的大纲。插值插值函数:存在简单易算的函数p(x)p(x)p(x),使得p(xi)=f(xi)p(x_i)=f(x_i)p(xi)=f(xi),则p(x)p(x)p(x)称为f(x)f(x)f(x)的插值函数。求p(x)p(x)p(x)的方法就是插值法。插值图示: 插值函数必须要经过插值节点处的函数值常用的插值方法是按照所使用的插值函数来分类的,包括:多项式插值p(x)p(x)p(x)为多项式,最常用多项式插值的存在唯一性定理已知n+1原创 2021-04-01 17:51:36 · 1044 阅读 · 2 评论 -
系数矩阵为方阵的线性方程组解的情况
线性代数教材中有关线性方程组的内容回顾下面这个问题可能勾起你对往日青葱岁月的回忆。对于线性方程组Ax=b(A为n阶方阵)Ax=b(A为n阶方阵)Ax=b(A为n阶方阵):什么情况下无解?什么情况下有唯一解?什么情况下有多个解?针对齐次线性方程组(b=0b=0b=0)和非齐次线性方程组(b≠0b\neq0b=0)要分类讨论。1.齐次线性方程组不存在无解的情况,至少有000解det(A)≠0det(A)\neq0det(A)=0(等价于r(A)=nr(A)=nr(A)=n),解是唯原创 2021-03-21 18:25:27 · 2320 阅读 · 0 评论