“ 鸡尾酒会问题”(cocktail party problem)

本文介绍了计算机语音识别领域的鸡尾酒会问题,探讨了在多人同时讲话时语音识别准确率下降的现象,并提供了使用Stanford大学Andrew NG教授的机器学习课程中介绍的方法及fastICA算法的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Introduction

“ 鸡尾酒会问题”(cocktail party problem)是在计算机语音识别领域的一个问题,当前语音识别技术已经可以以较高精度识别一个人所讲的话,但是当说话的人数为两人或者多人时,语音识别率就会极大的降低,这一难题被称为鸡尾酒会问题。

解决方案

斯坦福大学的Andrew NG教授的机器学习公开课(http://v.163.com/special/opencourse/machinelearning.html)(ml-class.org)

在第一章unsupervised learning那段视频里解决鸡尾酒会问题(cocktail party problem)就写了一行代码:

[W,s,v] = svd ((repmat(sum(x.*x,1),size(x,1),1).*x)*x');

用fastICA算法可以比较好地解决http://research.ics.tkk.fi/ica/fastica/

http://www.endolith.com/wordpress/2009/11/22/a-simple-fastica-example/ 是一个分离音乐的例子,效果比较明显。用的就是fastICA的python实现。不过好像用来解决cocktail party problem的话效果不太好。

Blind Source Separation of recorded speech and music signals:http://cnl.salk.edu/~tewon/Blind/blind_audio.html

from:


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值