计算机考研复试【英文文献翻译】

这篇博客汇总了计算机科学与技术面试中常见的技术点,包括5G网络、数据挖掘、人工智能、深度学习和SQL等。5G追求高数据速率和低延迟,数据挖掘在各行业广泛应用并面临新挑战,人工智能技术如AlphaGo和无人驾驶已深入现代生活,深度学习在多个领域取得突破,SQL则是管理关系数据库的关键。此外,还提到了编译器的重要作用。这些内容对于提升面试者的专业素养和英文表达能力大有裨益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:
  本人为21考生,所报专业为计算机科学与技术,准备面试过程中搜集了一些历年各大高校英语面试容易考到的英文文献片段。提供给各位小伙伴参考练习呀~

5G网络(5G)

NO.1:
The 5th generation mobile communication technology is the latest generation of cellular mobile communication technology, which is also an extension of 4G , 3G and 2G systems. 5G’s performance goals are high data rates, reduced latency, energy savings, reduced costs, increased system capacity, and large-scale device connectivity.

数据挖掘(Data Mining)

NO.1:
In the current era of big data, the mining and analysis of massive data is particularly important. Data mining technology has been widely applied in the fields of media, finance, medical care, transportation and e-commerce.However, the complexity and diversity of big data and the particularity of the application of data mining technology in various industries have also put forward new theoretical and technical challenges in the field of data mining.

NO.2:
The era of big data for the data mining technology has brought more opportunities and problems, such as the big data content for more efficient data mining algorithm and the accumulation of large data more quickness requirement of real-time data mining algorithms, the complexity of the large data diversity requires more flexible data mining algorithm, the universality of big data in all walks of life to the particularity in the field of data mining algorithm, etc.This also presents a new demand for data mining.

人工智能(Artificial Intelligence)

NO.1:
From AlphaGo to unmanned driving, from speech recognition to face recognition, artificial intelligence has become one of the most important technologies in the modern era. Artificial intelligence technology has been widely used in scientific discovery, economic construction, social life and other fields.Artificial intelligence research and development has been promoted to the national strategic level. With the continuous development of information technologies such as big data, cloud computing and Internet of things, artificial intelligence research is facing new challenges in theory, method and application.

NO.2:
In recent years, the rapid development of artificial intelligence technology makes its application expand rapidly. However, the traditional computer architecture has many shortcomings in processing speed, energy consumption and convenience of use for the application of artificial intelligence.With the development of the application of artificial intelligence, the architecture oriented to artificial intelligence has become an important direction in the research and development of architecture.

深度学习(Deep Learning)

NO.1:
Deep learning has achieved a lot in search technology, data mining, machine learning, machine translation, natural language processing, multimedia learning, voice, recommendation and personalization, and other related fields.Deep learning enables machines to imitate human activities such as audiovisual and thinking, solves many complex pattern recognition problems, and makes great progress in related technologies of artificial intelligence.

SQL定义

NO.1:
Structured Query Language is a special purpose programming Language, a database query and programming language for accessing data and querying, updating, and managing relational database systems.

NO.2:
SQL can be divided into three functional parts: data definition, data manipulation and data control.The core of SQL is equivalent to relational algebra, but it has many features that relational algebra does not, such as aggregation, database update, and so on.It is a comprehensive, universal, and highly functional relational database language.

编译器(Compiler)

NO.1:
A compiler is a program that translates “one language (usually a high-level language)” into "another language (usually a low-level language)."Advanced computer languages are easy to write, read, communicate, and maintain.Machine language is something that a computer can read and run directly.The compiler takes an assembly or high-level computer language source program as input and translates it into the equivalent of the machine code in the target language.

PS:我觉得英文文献翻译在口语中的侧重点就是看英语基本功(考察你读文献的能力),看看专业词汇认不认识啊,从句啊语法认不认识啊~,其实不用太紧张哒!

### 如何获取 DeepSeek 免费 Token 对于希望获取 DeepSeek 免费 Token 的用户来说,存在多个途径来实现这一目标。 当前有特定时间段内的优惠活动可供利用。例如,在注册 DeepSeek 账户时,新用户可以获得价值10元人民币的免费 Token,这大约等于一千万元的 Token 数量[^1]。此外,针对接入 DeepSeek V3 版本的服务,也有过提供五百万元 Token 的限时优惠直至指定日期结束的通知[^2]。而更进一步地,某些情况下服务商为了表达对客户的感激之情以及促进未来的合作关系,会在一定期限内给予更高额度如五亿 Tokens免费使用权[^4]。 需要注意的是这些优惠政策可能会随时间变化,并且具体条款可能有所调整。因此建议访问官方渠道确认最新的促销信息并按照指引完成相应操作以获得免费资源。 #### 获取步骤概述 虽然这里不使用诸如“首先”这样的引导词,但以下是概括性的描述: - 访问官方网站或应用平台创建账户; - 阅读并同意服务协议及相关政策说明; - 完成身份验证流程(如果必要); - 查看可用的奖励计划详情页了解最新福利措施; - 根据页面提示领取相应的免费 Token 或参与其他形式的激励项目; ```python # 示例代码用于展示如何通过API请求获取Token(假设场景),实际操作需参照官方文档指导。 import requests def get_free_token(api_url, user_info): response = requests.post(api_url, json=user_info) if response.status_code == 200: token_data = response.json() print(f"成功获取到 {token_data['amount']} tokens.") else: print("未能成功获取Token.") user_details = {"email": "example@example.com", "password": "securePassword"} get_free_token("https://api.deepseek.example/token/free", user_details) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值