行业概述
1、AI大模型定义
AI大模型是指在机器学习和深度学习领域中,采用大规模参数(至少在一亿个以上)的神经网络模型,AI大模型在训练过程中需要使用大量的算力和高质量的数据资源。
2、AI大模型主要特征
AI大模型具有泛化性(知识迁移到新领域)、通用性(不局限于特定领域)以及涌现性(产生预料之外的新能力)特征。以ChatGPT为代表的AI大模型因其具有巨量参数和深度网络结构,能学习并理解更多的特征和模式,从而在处理复杂任务时展现强大的自然语言理解、意图识别、推理、内容生成等能力,同时具有通用问题求解能力,被视作通往通用人工智能的重要路径。
3、AI大模型分类
按模态划分,大模型可分为自然语言处理(NLP)大模型,视觉(CV)大模型、多模态大模型等。
**按照部署方式划分,AI大模型主要分为云侧大模型和端侧大模型两类。**云侧大模型由于部署在云端,其拥有更大的参数规模、更多的算力资源以及海量的数据存储需求等特点;端侧大模型通常部署在手机、PC等终端上,具有参数规模小、本地化运行、隐私保护强等特点。
具体而言,**云侧大模型分为通用大模型和行业大模型;端侧大模型主要有手机大模型、PC大模型。**从云侧大模型来看,通用大模型具有适用性广泛的特征,其训练数据涵盖多个领域,能够处理各种类型的任务,普适性较强。行业大模型具有专业性强的特点,针对特定行业(如金融、医疗、政务等)的需求进行模型训练,因而对特定领域具有更深的业务理解和场景应用能力。从端侧大模型来看,手机和PC大模型由于直接部署在设备终端,让用户体验到更加个性化和便捷的智能体验。
当前AI大模型的应用路线日渐清晰,大致途径为“基础大模型→行业大模型→终端应用”。
**
**
4、AI大模型行业应用价值
AI大模型能够提升要素效率及数据要素地位。
**目前数据已成为新生产要素。**数字经济是继农业经济、工业经济之后的现阶段主要经济形态,数据要素已成为数字经济时代下的新型生产要素。2019年十九届四中全会,数字要素首次被增列为生产要素,数据要素地位得到确立。我国成为首个将数据列为生产要素的国家。
数据从企业内部到外部的流通过程中可以创造三次价值:1、数据支撑业务贯通;2、数据推动企业数智决策;3、数据资源流通交易赋能社会创造额外价值。
**AI大模型技术进步提升生产要素使用效率。**基于生产函数模型,AI大模型的技术进步对生产函数的影响如图所示,且当前的大模型技术进步对经济增长的影响仍成发散态势,即AB<BC<CD。AI大模型的应用从改变数据要素的生成方式和企业经营决策驱动方式两大维度提升了数据要素在生产要素