Overview
多模态大模型关于RLHF的代表性文章
一、InternLM-XComposer
题目: InternLM-XComposer: A Vision-Language Large Model for Advanced Text-image Comprehension and Composition
机构:上海人工智能实验室
论文: https://arxiv.org/abs/2309.15112
代码:https://github.com/InternLM/InternLM-XComposer
任务: 交织文本-图像理解的多模态大模型
特点:
方法:
前置相关工作:CLIP、BLIP、LLaVA、MiniGPT-4、InstructBLIP
1.1 出发点
这篇论文提出了InternLM-XComposer,这是一个视觉-语言大型模型,旨在解决高级图像-文本理解和组合的问题。具体来说,它试图解决以下问题:
- 交织文本-图像组合:InternLM-XComposer

本文深入探讨了InternLM-XComposer系列多模态大模型,包括InternLM-XComposer和InternLM-XComposer2,它们旨在解决高级图像-文本理解和组合问题。模型通过预训练和监督微调,结合视觉编码器、感知采样器和大型语言模型,实现了在多模态任务中的先进性能。实验结果显示,InternLM-XComposer在多个基准测试中取得最佳成绩,展示了在文本-图像组合和多语言理解方面的强大能力。InternLM-XComposer2则通过部分LoRA方法进一步增强了视觉理解和文本组合能力。
订阅专栏 解锁全文
1539

被折叠的 条评论
为什么被折叠?



