- 博客(13)
- 收藏
- 关注
原创 对抗生成式主动学习 Generative Adversarial Active Learning
Generative Adversarial Active LearningPaper Reading NoteURL: https://arxiv.org/pdf/1702.07956v5.pdfTL;DR第一篇用以GAN为代表的生成式方法来做Active Learning的文章,比较有开创性,,利用已标注数据,用GAN生成uncertainty值高的"假"样本加速模型训练,在许多情况...
2019-08-24 21:13:25 2639 2
原创 贝叶斯生成式主动学习 Bayesian Generative Active Deep Learning
Bayesian Generative Active Deep LearningPaper Reading NoteURL: https://arxiv.org/pdf/1904.11643.pdfTL;DRICML2019上关于主动学习的新作,整合了用贝叶斯神经网络衡量预测不确定性的方法BALD、MCDropout和用GAN生成不确定样本的方法GAAL,将pool-based和query...
2019-08-24 21:09:45 4335
原创 迁移学习综述笔记: Transfer Adaptation Learning: A Decade Survey
19年所做的对迁移学习和域适应(作者统称为**Transfer Adaptation Learning,TAL**)的综述,总结了**five key challenges of TAL**以及TAL模型测试的**12个benchmark**.
2019-08-24 21:02:22 2853
原创 Paper Notes——Deep Learning In Program Synthesis and Induction
Neural program synthesis&Induction的三篇入门论文,在期末过后的招生季,在往返南北的飞机上、酒店房间的小憩中断断续续地读下来,在此记之。By Samuel Chen 2019.61.Recent Advances in Neural Program Synthesis综述性文章,介绍了Program Induction的概念、常见模型、它们的表现及改进...
2019-07-05 20:49:23 723
原创 Java课设——ArxivHelper
项目地址https://github.com/PKUCSS/arxiv-helperHow to run运行方式:java -jar arxiv-helper.jarTips:We use pyinstaller to export the exe application from the jar package, but the test performance is unstable in...
2019-06-18 13:12:52 683
原创 网络流(2)-最小费用流
定义每条边都有单位费用w(i,j)w(i,j)w(i,j),设f为N上的一个可行流,称w(f)=∑<i,j>∈Ew(i,j)f(i,j)w(f) = \sum_{<i,j> ∈ E} w(i,j)f(i,j)w(f)=∑<i,j>∈Ew(i,j)f(i,j) 为f的费用,所有流量为v0v_0v0的可行流中费用最小的称作流量v...
2019-04-17 15:18:10 1271
原创 网络流(1)
网络流(1)基本概念和性质最小割设容量网络N=<V,E,c,s,t>,A⊂V且s∈A,t∈V−A,称(A,V−A)={<i,j>∣<i,j>∈E且i∈A,j∈V−A}N = <V,E,c,s,t>,A \subset V 且 s ∈ A,t ∈ V-A ,称(A,V-A) = \{...
2019-04-17 11:35:26 357
原创 关于jar包
生成jar包的命令:jar cvfe xx.jar 主类名(不带.java后缀) *(代表目录下所有文件)执行jar包的命令:java -jar name.jar原文链接
2019-04-17 10:18:01 137
原创 贪心算法的正确性证明
贪心算法的正确性证明摘要贪心算法最难的部分就是正确性的证明,常用的方法有归纳法(对算法步数归纳、对问题归纳)和交换论证法(从最优解出发,不变坏地替换,得到贪心策略的解)。下面以三个例子说明这些正确性证法。活动选择问题——对算法步数归纳最优装载问题——对问题规模归纳最小延迟调度——交换论证我的个人博客上的原文链接活动选择问题问题S={1,2,…,n}S = \{ 1,2,…,n...
2019-03-15 16:43:52 33440 5
原创 算法面试题:扔玻璃杯的学问
扔玻璃杯的学问问题简述在算分研讨班上第一节课听到的有趣问题,据说是鹅厂面试题:有一种玻璃杯质量确定但未知,需要检测。有一栋100层的大楼,该种玻璃杯从某一层楼扔下,刚好会碎。现给你两个杯子,问怎样检测出这个杯子的质量,即找到在哪一层楼刚好会碎?思路暴力: 拿一个杯子从第一层开始往上一直扔,一定能找到答案。最坏需要99次。 似乎暴力得过头了,而且只用到一个杯子。改进: 分...
2019-02-27 17:16:57 2633
原创 分治法:芯片测试
芯片测试问题描述Diogenes教授有n个被认为是完全相同的VLSI芯片,原则上它们是可以互相测试的教授的测试装置一次可测二片,当该装置中放有两片芯片时,每一片就对另一片作测试并报告其好坏。一个好的芯片总是能够报告另一片的好坏,但一个坏的芯片的结果是不可靠的。这样,每次测试的四种可能结果如下:A报告B报告结论B是好的A是好的AB都好或者AB都坏B是好的A...
2019-02-27 17:13:55 2250
原创 分治法妙用-1
Divide and Conquer求斐波那契数转化为矩阵乘法,用分治法计算,复杂度为O(logn)O(logn)O(logn)位乘问题设X,Y为两个n位二进制数,n=2kn = 2^kn=2k,求XY传统算法W(n)=O(n2)W(n) = O(n^2)W(n)=O(n2)分治法把两个数都对半截,分解为4个子问题X=An/2+B,Y=Cn/2+DXY=AC2n+(AD+BC)...
2019-02-27 17:12:38 328
原创 并查集入门题-以POJ1611 The Suspects为例
题目:DescriptionSevere acute respiratory syndrome (SARS), an atypical pneumonia of unknown aetiology, was recognized as a global threat in mid-March 2003. To minimize transmission to others, the be...
2018-09-18 12:03:36 129
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人