Bayesian Generative Active Deep Learning
Paper Reading Note
URL: https://arxiv.org/pdf/1904.11643.pdf
TL;DR
ICML2019上关于主动学习的新作,整合了用贝叶斯神经网络衡量预测不确定性的方法BALD、MCDropout和用GAN生成不确定样本的方法GAAL,将pool-based和query-synthesis的方法结合起来做ActiveLearning,只用40%的训练数据就在CIFAR上取得了91% 的准确率。虽然有拿他人方法排列组合的感觉,但阅读本文对了解AcitveLearning各方面的进展还是十分有益的。
Information below is optional; you can change/remove it if you like
Related Works
GAAL & BDA
与传统的pool-based方法从unlabeled中选取有价值的样本交给人标注不同,GAAL(Generative Adversial Active Learning) 用GAN生成信息量大的“伪样本”交给人标注,同样能以较低的cost训练出好的模型,paper见Arxiv链接
BALD & MC-Dropout
之前Deep Learning和Active Learning较难结合有两个原因:
- DL需要大量带标签数据,而AL着眼的就是标注尽可能少的数据来训练好模型。
- AL每次query时需要做uncertainty sampling ,而NN模型预测的不确定性没有很好的标准衡量。
Houlsby等人在2011年提出了贝叶斯不一致主动学习(Bayesian Active Learning by Disagreement,BALD),用贝叶斯神经网络做分类器能更好地衡量预测的不确定性,可以参看Bayesian Active Learning for Classification and Preference Learning,我简要概括如下:
The central goal of information theoretic active learning is to reduce the number possible hypotheses maximally fast, i.e.
to minimize the uncertainty about the parameters using Shannon’s entropy
即基于信息论的主动学习核心目标是快速地降低可能的假设数量,即根据香农熵最小化参数的不确定性,用式子表述是:
a r g m i n D ′ H ( θ ∣ D ′ ) = − ∫ p ( θ ∣ D ′ ) l o g p