【转自cvchina】online random forest

这篇博客介绍了在线学习的概念,特别是针对数据量大或无法预先获取所有训练数据的情况。文章对比了批量模式学习的不足,并重点讨论了在线学习的挑战。提到了在线Adaboost在目标跟踪中的应用以及存在漂移问题,以及一篇关于在线随机森林的论文,该方法在效果上接近离线模式。推荐了两篇相关论文并提供了代码资源。
摘要由CSDN通过智能技术生成

http://www.cvchina.info/2010/05/26/online-random-forest/

 

优秀网站:http://www.cvchina.info/tag/machine-learning/

2010年5月26日 CVUNC

一直忽悠cvchina,心有歉意。第一次发文,简单写点online learning的东西。

传统的SVM和adaboost都是batch mode learning. 所谓的batch mode learning, 简单说,就是所有的训练数据都是available的(或则说所有训练数据都已经在内存中)。这种方法主要有2个缺点:

1)  有时候数据量太大,在内存中放不下,处理起来不方便

2)  由于应用环境限制,有时候无法在训练之前得到所有训练数据

Online

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值