The n-queens puzzle is the problem of placing n queens on an n�n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q'
and '.'
both indicate a queen and an empty space respectively.
For example,
There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
class Solution { public: void backtrace(vector<vector<string> > &ans, vector<int> board, int k, int n) { if(k >= n - 1){ vector<string> v; for(int i = 0; i < n; i++){ v.push_back(string(n, '.')); } for(int i = 0; i < n; i++){ v[i][board[i]] = 'Q'; } ans.push_back(v); return; } k++; int flag = 0; for(int t = 0; t < n; t++) { int p; for(p = 0; p < k; p++){ if(board[p] == t || (k - p == t - board[p] || k - p == board[p] - t)){ break; } } if(p == k){ board[k] = t; backtrace(ans, board, k, n); } } } vector<vector<string> > solveNQueens(int n) { // Start typing your C/C++ solution below // DO NOT write int main() function vector<vector<string> > ans; vector<int> board(n); backtrace(ans, board, -1, n); return ans; } };