N-Queens

The n-queens puzzle is the problem of placing n queens on an nn chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

For example,
There exist two distinct solutions to the 4-queens puzzle:

[
 [".Q..",  // Solution 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // Solution 2
  "Q...",
  "...Q",
  ".Q.."]
]
class Solution {
public:
	void backtrace(vector<vector<string> > &ans, vector<int> board, int k, int n) {
		if(k >= n - 1){
			vector<string> v;
			for(int i = 0; i < n; i++){
				v.push_back(string(n, '.'));
			}
			for(int i = 0; i < n; i++){
				v[i][board[i]] = 'Q';
			}
			ans.push_back(v);
			return;
		}
		k++;
		int flag = 0;
		
		for(int t = 0; t < n; t++) {
			int p;
			for(p = 0; p < k; p++){
				if(board[p] == t || (k - p == t - board[p] || k - p == board[p] - t)){
					break;
				}
			}
			if(p == k){
				board[k] = t;
				backtrace(ans, board, k, n);
				
			}
		}
	}
    vector<vector<string> > solveNQueens(int n) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        vector<vector<string> > ans;
		vector<int> board(n);
		backtrace(ans, board, -1, n);
		return ans;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值