【看论文】之《番茄采摘机器人关键技术研究_王丽丽 》

该博士论文由王丽丽撰写,研究了番茄采摘机器人的关键技术和自动识别定位技术。研究内容包括:四轮独立转向行走平台、激光导航控制、四自由度机械臂、双目视觉识别定位。双目立体视觉系统识别成功率为99%,定位误差小于10mm,采摘成功率超过86.7%。论文探讨了现有技术的问题并提出了改进方案,包括自适应调整修正系数的Niblack算法,以提高图像识别和分割效果。
摘要由CSDN通过智能技术生成

论文信息

论文题目:《番茄采摘机器人关键技术研究》

作者:王丽丽

单位:北京工业大学

来源:中国知网

论文性质:博士学位论文

论文提交时间:2017.5


摘要

主要研究内容:

(1)总体设计了番茄采摘机器人系统;

(2)用模块化设计方法和嵌入式控制系统理论,研制了四轮独立转向行走平台;

(3) 研制了基于激光传感技术的激光自动导航控制系统;

(4)研制了串联式灵巧型四自由度机械臂;

(5)研究了基于双目视觉的番茄自动识别与定位技术;

(6)开展了番茄采摘机器人各部分控制系统性能试验和整体试验;

试验结果:双目立体视觉系统识别成功率 99%,当识别距离小于 600mm 时,定位误差小于 10mm;番茄采摘机器人采摘单个番茄平均耗时 15s,采摘成功率大于86.7%


1 绪论

研究现状

番茄采摘机器人研究现状
年份 作者 研究内容 成果
1984年 以日本为代表 机器人有五个自由度、机械手为关节型 只有一个机器人
90年代初 日本 七自由度番茄采摘机器人 机器人具有行走系统、采摘系统、视觉系统、控制系统;15s/个,成功率70%
2004博览会展出 美国加利福尼亚机械公司 全自动番茄收获机 利用光谱特征识别出成熟的果实、并将番茄的枝叶粉碎
2008年 日本冈山大学门田充司教授 番茄采摘机器人 由机械手、视觉系统、控制器组成,通过在预定钢轨上行走,经过视觉系统探测番茄果实。采摘15/个,成熟的番茄采摘成功率在50%~70%左右

国内果蔬采摘机器人研究现状

番茄采摘机器人

赵杰文等对番茄识别方法进行了研究,基于HIS颜色特征的目标识别方法对于相互分离的田间成熟番茄识别效果较好;

梁喜凤等研究了番茄采摘机械手的运动学和动力学性能,并开展了机械手运动学和动力学优化和仿真研究,效果较好;

浙江大学研究了七自由度番茄采摘机械手,并进行结构分析与参数优化,研究了基于红外热成像和颜色信息相结合的番茄目标识别方法;

南京农大研究了成熟番茄的定位技术,利用双目视觉灰度化番茄彩色图像,通过腐蚀、膨胀的方法对直方图进行处理,然后利用曲线拟合的分割方法,提取目标。最后利用面积匹配法和提示成像原理得到目标标的三维信息。当视觉系统与目标番茄的距离在300mm~400mm之间时,识别误差在3%~4%之间;

江苏大学学者研究了基于彩色柱状图算法的成熟番茄目标识别方法,通过条件R-G>80能够快速判定西红柿像素,该方法也适用于目标和背景颜色特征差异大的场合;

其他果蔬采摘机器人

2011年,中国农业大学农业机器人实验室李伟等人完成了黄瓜采摘机器人的研究,提出了基于计算机视觉和模糊控制技术的导航方法,提出了基于形状特征识别出黄瓜的成熟度,采摘时间15s/根,最大偏差小于5cm;

中国农业大学李伟教授研究了果实自动采摘方法[5],针对温室种植环境采用近红外图像处理方法识别出黄瓜果实与枝叶背景信息,实现了目标与背景差异不明显的生物信息图像处理,定位误差+5mm;

中国农业大学李伟教授对自然光条件下苹果果柄的识别与定位方法

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值