Vision引擎 中环境天空 大气散射介绍

大气散射

引言

大气散射是一种渲染带有时间系统的真实天空的方式,其表现非常接近行星大气中的真实光照散射。

设置

EarthRadius(地球半径)和 AtmosphereRadius(大气半径): 这两个参数决定了行星大小和大气厚度。 更厚的大气会产生更蓝甚至偏绿的天空,以及更大的太阳光晕,但太阳本身会显得更小。

AirDensity(空气密度): 如果折射率相同(见下文),更密的空气通常显得更暗、更蓝。 请注意,典型情况下,密度较小的空气也有较低的折射率,所以两个值应当串联调整。 为了演示,下面的图片设折射率为 1.000293,即大约相当于地球参数。

AirRefraction(空气折射): 通常,光线射入大气时会发生偏斜,就像射入水池中一样。 这是因为地球周围的大气比外太空密得多,就像水比周围的空气更密一样。 折射率参数控制着这一偏斜的幅度。 当该值为 1 则不发生任何折射,太阳光看起来就和在外太空一样。 该值越大,空气效果就越明显。

MieFactor(米氏因数): 该参数可视为天空阴沉度的指标。 该值越高,天空就越清澈,太阳就越明亮。

MeanMolecularDensityHeight(平均分子密度高度): 分子(瑞利)散射通常是造成天空蓝色调的原因。 该参数指定了分子密度达到平均值(在地球上大约为 8 公里)时的海拔高度。 值越低,大气密度在行星表面就越高,并随海拔上升迅速下降。 较高的值意味着密度随海拔的变化不那么剧烈,通常会形成更明显的散射效果。

MeanAerosolDensityHeight(平均悬浮颗粒密度高度): 悬浮颗粒(米氏)散射是由悬浮在空气中的悬浮颗粒导致的,也就是水蒸气、污染微粒或灰尘等等。 该参数指定了悬浮颗粒密度达到平均值(在地球上大约为 1.2 公里)时的海拔高度。 该值越高,则悬浮颗粒分布越平均,通常会令天空的颜色更均匀,太阳看起来会更大。

RayleighScale(瑞利缩放比例)和 MieScale(米氏缩放比例): 这些参数让用户手动微调两种散射类型所带来的影响。

SkyOffset(天空补偿): 大气散射系统仅渲染大气,而非地球,也就是说,不渲染地平线以下的任何东西。 通常,观察者周围的行星实际上会被天空层和几何体混合填充,但这也许并不足够。 为了满足那种情况下的要求,可以使用补偿参数将地平线往下”拽”一个特定的角度。

请注意,这可能使大气散射系统与时间变化系统出现一定程度的不同步,因为太阳会稍早升起、稍晚落下。

Wavelength(波长): 该参数允许用户明确指定颜色的波长,以此手动调整颜色。 X、Y 和 Z 组件分别对应红、绿和蓝色的波长。 笼统地讲,值越低,光谱的对应谱分色就越明显。 例如,把 X(红)谱分量降低到 0.5,会产生如下图的紫色天空图像。

转自:project anarchy中文社区


在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值