Vision引擎 中环境天空 大气散射介绍

大气散射

引言

大气散射是一种渲染带有时间系统的真实天空的方式,其表现非常接近行星大气中的真实光照散射。

设置

EarthRadius(地球半径)和 AtmosphereRadius(大气半径): 这两个参数决定了行星大小和大气厚度。 更厚的大气会产生更蓝甚至偏绿的天空,以及更大的太阳光晕,但太阳本身会显得更小。

AirDensity(空气密度): 如果折射率相同(见下文),更密的空气通常显得更暗、更蓝。 请注意,典型情况下,密度较小的空气也有较低的折射率,所以两个值应当串联调整。 为了演示,下面的图片设折射率为 1.000293,即大约相当于地球参数。

AirRefraction(空气折射): 通常,光线射入大气时会发生偏斜,就像射入水池中一样。 这是因为地球周围的大气比外太空密得多,就像水比周围的空气更密一样。 折射率参数控制着这一偏斜的幅度。 当该值为 1 则不发生任何折射,太阳光看起来就和在外太空一样。 该值越大,空气效果就越明显。

MieFactor(米氏因数): 该参数可视为天空阴沉度的指标。 该值越高,天空就越清澈,太阳就越明亮。

MeanMolecularDensityHeight(平均分子密度高度): 分子(瑞利)散射通常是造成天空蓝色调的原因。 该参数指定了分子密度达到平均值(在地球上大约为 8 公里)时的海拔高度。 值越低,大气密度在行星表面就越高,并随海拔上升迅速下降。 较高的值意味着密度随海拔的变化不那么剧烈,通常会形成更明显的散射效果。

MeanAerosolDensityHeight(平均悬浮颗粒密度高度): 悬浮颗粒(米氏)散射是由悬浮在空气中的悬浮颗粒导致的,也就是水蒸气、污染微粒或灰尘等等。 该参数指定了悬浮颗粒密度达到平均值(在地球上大约为 1.2 公里)时的海拔高度。 该值越高,则悬浮颗粒分布越平均,通常会令天空的颜色更均匀,太阳看起来会更大。

RayleighScale(瑞利缩放比例)和 MieScale(米氏缩放比例): 这些参数让用户手动微调两种散射类型所带来的影响。

SkyOffset(天空补偿): 大气散射系统仅渲染大气,而非地球,也就是说,不渲染地平线以下的任何东西。 通常,观察者周围的行星实际上会被天空层和几何体混合填充,但这也许并不足够。 为了满足那种情况下的要求,可以使用补偿参数将地平线往下”拽”一个特定的角度。

请注意,这可能使大气散射系统与时间变化系统出现一定程度的不同步,因为太阳会稍早升起、稍晚落下。

Wavelength(波长): 该参数允许用户明确指定颜色的波长,以此手动调整颜色。 X、Y 和 Z 组件分别对应红、绿和蓝色的波长。 笼统地讲,值越低,光谱的对应谱分色就越明显。 例如,把 X(红)谱分量降低到 0.5,会产生如下图的紫色天空图像。

转自:project anarchy中文社区


内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值