马尔可夫链

马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。

马尔可夫链(Markov Chain),描述了一种状态序列,其每个状态值取决于前面有限个状态 [1]  。马尔可夫链是具有马尔可夫性质的随机 变量的一个数列。这些变量的范围,即它们所有可能取值的 集合,被称为“ 状态空间”,而
的值则是在时间n的状态。如果
对于过去状态的条件 概率分布仅是
的一个 函数,则
这里x为过程中的某个状态。上面这个 恒等式可以被看作是 马尔可夫性质。

隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别

正常的马尔可夫模型中,状态对于观察者来说是直接可见的。这样状态的转换概率便是全部的参数。而在马尔可夫模型中,状态并不是直接可见的,但受状态影响的某些变量则是可见的。每一个状态在可能输出的符号上都有一概率分布。因此输出符号的序列能够透露出状态序列的一些信息。


举个例子:

主要应用于 语音识别、音字转换、词性标注。
自然 语言是人类交流信息的 工具。很多自然语言处理问题都可以等同于通信系统中的解码问题--一个人根据接收到的信息,去猜测发话人要表达的意思。这其实就象通信中,人们根据接收端收到的信号去分析、理解、还原发送端传送过来的信息。比如一个典型的通信系统中:其中s1,s2,s3...表示信息源发出的信号。o1,o2,o3...是接受器接收到的信号。通信中的解码就是根据接收到的信号o1,o2,o3...还原出发送的信号s1,s2,s3...。
其实人们平时在说话时,脑子就是一个 信息源。人们的喉咙( 声带),空气,就是如 电线光缆般的信道。听众耳朵的就是接收端,而听到的声音就是传送过来的信号。根据声学信号来推测说话者的意思,就是语音识别。这样说来,如果接收端是一台计算机而不是人的话,那么计算机要做的就是语音的自动识别。同样,在计算机中,如果我们要根据接收到的 英语信息,推测说话者的汉语意思,就是机器 翻译;如果我们要根据带有拼写错误的语句推测说话者想表达的正确意思,那就是自动纠错。那么怎么根据接收到的信息来推测说话者想表达的意思呢?人们可以利用叫做"隐含马尔可夫模型" (HiddenMarkovModel) 来解决这些问题。以语音识别为例,当我们观测到语音信号o1,o2,o3时,要根据这组信号推测出发送的句子s1,s2,s3。显然,人们应该在所有可能的句子中找最有可能性的一个。用 数学语言来描述,就是在已知o1,o2,o3,...的情况下,求使得 条件概率
P(s1,s2,s3,...|o1,o2,o3....)达到最大值的那个句子s1,s2,s3,...
当然,上面的概率不容易直接求出,于是人们可以间接地计算它。利用 贝叶斯公式并且省掉一个 常数项,可以把上述公式等价变换成
P(o1,o2,o3,...|s1,s2,s3....)*P(s1,s2,s3,...)
其中
P(o1,o2,o3,...|s1,s2,s3....)表示某句话s1,s2,s3...被读成o1,o2,o3,...的可能性,而
P(s1,s2,s3,...)表示 字串s1,s2,s3,...本身能够成为一个合乎情理的句子的可能性,所以这个公式的意义是用发送信号为s1,s2,s3...这个 数列的可能性乘以s1,s2,s3...本身可以一个句子的可能性,得出 概率
(读者读到这里也许会问,你现在是不是把问题变得更复杂了,因为公式越写越长了。别着急,就来简化这个问题。)人们们在这里做两个假设:
第一,s1,s2,s3,...是一个 马尔可夫链,也就是说,si只由si-1决定(详见系列一);
第二,第i时刻的接收信号oi只由发送信号si决定(又称为独立输出假设,即P(o1,o2,o3,...|s1,s2,s3....)=P(o1|s1)*P(o2|s2)*P(o3|s3)...。
那么人们就可以很容易利用算法Viterbi找出上面式子的最大值,进而找出要识别的句子s1,s2,s3,...。
满足上述两个假设的模型就叫隐含马尔可夫模型。我们之所以用“隐含”这个词,是因为状态s1,s2,s3,...是无法直接观测到的。
隐含马尔可夫模型的应用远不只在语音识别中。在上面的公式中,如果我们把s1,s2,s3,...当成中文,把o1,o2,o3,...当成对应的英文,那么人们就能利用这个模型解决 机器翻译问题;如果我们把o1,o2,o3,...当成扫描文字得到的图像特征,就能利用这个模型解决印刷体和手写体的识别。
P(o1,o2,o3,...|s1,s2,s3....)根据应用的不同而又不同的名称,在 语音识别中它被称为“ 声学模型”( AcousticModel),在 机器翻译中是“翻译模型”( TranslationModel)而在拼写校正中是“纠错模型”( CorrectionModel)。而P(s1,s2,s3,...)就是我们在系列一中提到的语言模型。
在利用隐含马尔可夫模型解决语言处理问题前,先要进行模型的训练。常用的训练方法由伯姆( Baum)在60年代提出的,并以他的名字命名。隐含马尔可夫模型在处理语言问题早期的成功应用是语音识别。七十年代,当时 IBMFredJelinek(贾里尼克)和 卡内基·梅隆大学JimandJanetBaker(贝克夫妇,李开复的师兄师姐)分别独立地提出用隐含马尔可夫模型来识别语音,语音识别的错误率相比人工智能和模式匹配等方法降低了三倍(从30%到10%)。八十年代李开复博士坚持采用隐含马尔可夫模型的框架,成功地开发了世界上第一个大词汇量连续语音识别系统Sphinx。
马尔可夫模型的使用方法
它可以用来预测具有等时间隔(如一年)的时刻点上各类人员的分布状况。
它是根据历史数据,预测等 时间间隔点上的各类人员分布状况。此方法的基本思想上根据过去人员变动的规律,推测未来人员变动的趋势。步骤如下:
①根据历史数据推算各类人员的转移率,迁出转移率的 转移矩阵
②统计作为初始时刻点的各类人员分布状况;
③建立马尔科夫 模型,预测未来各类人员供给状况;
使用马尔科夫模型进行 人力资源供给预测的关键是确定出人员转移率 矩阵表,而在实际预测时,由于受各种因素的影响,人员转移率是很难准确确定出来的,往往都是一种大致的估计,因此会影响到预测结果的准确性。

转自--

百度百科-马尔可夫模型,马尔可夫链

维基百科-隐马尔可夫模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值